These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36379314)

  • 21. Three-dimensional electroconductive carbon nanotube-based hydrogel scaffolds enhance neural differentiation of stem cells from apical papilla.
    Liu J; Zou T; Zhang Y; Koh J; Li H; Wang Y; Zhao Y; Zhang C
    Biomater Adv; 2022 Jul; 138():212868. PubMed ID: 35913250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The optimal electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells.
    Esmaeili Abdar Z; Jafari R; Mohammadi P; Nadri S
    Int J Artif Organs; 2022 Aug; 45(8):695-703. PubMed ID: 35773946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chitosan/gelatin porous scaffolds assembled with conductive poly(3,4-ethylenedioxythiophene) nanoparticles for neural tissue engineering.
    Wang S; Sun C; Guan S; Li W; Xu J; Ge D; Zhuang M; Liu T; Ma X
    J Mater Chem B; 2017 Jun; 5(24):4774-4788. PubMed ID: 32264320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [PREPARATION OF BIONIC COLLAGEN-HEPARIN SULFATE SPINAL CORD SCAFFOLD WITH THREE-DIMENSIONAL PRINT TECHNOLOGY].
    Zhang R; Tu Y; Zhao M; Chen C; Liang Haiqian ; Wang J; Zhang S; Li X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1022-7. PubMed ID: 26677627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of electroconductive multifunctional composite nanofibrous scaffold on adipose-derived mesenchymal stem cells.
    Słysz A; Siennicka K; Kijeńska-Gawrońska E; Dębski T; Zołocińska A; Święszkowski W; Pojda Z
    Tissue Cell; 2022 Oct; 78():101899. PubMed ID: 36030673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration.
    Dodel M; Hemmati Nejad N; Bahrami SH; Soleimani M; Mohammadi Amirabad L; Hanaee-Ahvaz H; Atashi A
    Biologicals; 2017 Mar; 46():99-107. PubMed ID: 28189483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 2D Ti
    Guo R; Xiao M; Zhao W; Zhou S; Hu Y; Liao M; Wang S; Yang X; Chai R; Tang M
    Acta Biomater; 2022 Feb; 139():105-117. PubMed ID: 33348061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds.
    Liu C; Huang Y; Pang M; Yang Y; Li S; Liu L; Shu T; Zhou W; Wang X; Rong L; Liu B
    PLoS One; 2015; 10(3):e0117709. PubMed ID: 25803031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Dual Functional Scaffold Tethered with EGFR Antibody Promotes Neural Stem Cell Retention and Neuronal Differentiation for Spinal Cord Injury Repair.
    Xu B; Zhao Y; Xiao Z; Wang B; Liang H; Li X; Fang Y; Han S; Li X; Fan C; Dai J
    Adv Healthc Mater; 2017 May; 6(9):. PubMed ID: 28233428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair.
    Li X; Fan C; Xiao Z; Zhao Y; Zhang H; Sun J; Zhuang Y; Wu X; Shi J; Chen Y; Dai J
    Biomaterials; 2018 Nov; 183():114-127. PubMed ID: 30153562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrical stimulation of adipose-derived mesenchymal stem cells and endothelial cells co-cultured in a conductive scaffold for potential orthopaedic applications.
    Zhang J; Neoh KG; Kang ET
    J Tissue Eng Regen Med; 2018 Apr; 12(4):878-889. PubMed ID: 28482125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering.
    Pires F; Ferreira Q; Rodrigues CA; Morgado J; Ferreira FC
    Biochim Biophys Acta; 2015 Jun; 1850(6):1158-68. PubMed ID: 25662071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D conductive nanocomposite scaffold for bone tissue engineering.
    Shahini A; Yazdimamaghani M; Walker KJ; Eastman MA; Hatami-Marbini H; Smith BJ; Ricci JL; Madihally SV; Vashaee D; Tayebi L
    Int J Nanomedicine; 2014; 9():167-81. PubMed ID: 24399874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering.
    Zhao Y; Liang Y; Ding S; Zhang K; Mao HQ; Yang Y
    Biomaterials; 2020 Oct; 255():120164. PubMed ID: 32554132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silk fibroin nanofibrous scaffolds incorporated with microRNA-222 loaded chitosan nanoparticles for enhanced neuronal differentiation of neural stem cells.
    Li Z; Meng Z; Zhao Z
    Carbohydr Polym; 2022 Feb; 277():118791. PubMed ID: 34893221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration.
    Wang S; Guan S; Zhu Z; Li W; Liu T; Ma X
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():308-316. PubMed ID: 27987712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effect of poly (L-lysine) modified silk fibroin film on the growth and differentiation of neural stem cells].
    Zhao X; Deng L; Deng Y; Wan Y; Zhang L
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1650-1659. PubMed ID: 30394032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of neural stem cells on electrospun poly(epsilon-caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering.
    Nisbet DR; Yu LM; Zahir T; Forsythe JS; Shoichet MS
    J Biomater Sci Polym Ed; 2008; 19(5):623-34. PubMed ID: 18419941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction of a decellularized spinal cord matrix/GelMA composite scaffold and its effects on neuronal differentiation of neural stem cells.
    He W; Wang H; Zhang X; Mao T; Lu Y; Gu Y; Ju D; Qi L; Wang Q; Dong C
    J Biomater Sci Polym Ed; 2022 Nov; 33(16):2124-2144. PubMed ID: 35835455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combination of electrical stimulation and bFGF synergistically promote neuronal differentiation of neural stem cells and neurite extension to construct 3D engineered neural tissue.
    Meng XT; Du YS; Dong ZY; Wang GQ; Dong B; Guan XW; Yuan YZ; Pan H; Wang F
    J Neural Eng; 2020 Nov; 17(5):056048. PubMed ID: 32731207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.