BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36379730)

  • 1. Phytoextraction of anthropogenic heavy metal contamination of the Blesbokspruit wetland: Potential of wetland macrophytes.
    Heisi HD; Awosusi AA; Nkuna R; Matambo TS
    J Contam Hydrol; 2023 Feb; 253():104101. PubMed ID: 36379730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Metal Pollution in Sediment and Macrophytes of Varthur Lake, Bangalore.
    Sudarshan P; Mahesh MK; Ramachandra TV
    Bull Environ Contam Toxicol; 2020 Apr; 104(4):411-417. PubMed ID: 32152684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.
    Rai PK
    Int J Phytoremediation; 2008; 10(2):131-58. PubMed ID: 18709926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper hydrophytoremediation by wetland macrophytes in semi-hydroponic and hydroponic mesocosms.
    Rimal S; Karam A; Chen J; Parajuli A; Khasa DP
    Int J Phytoremediation; 2023; 25(6):737-745. PubMed ID: 35917556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.
    Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN
    Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: a comparative assessment.
    Eid EM; Galal TM; Sewelam NA; Talha NI; Abdallah SM
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12138-12151. PubMed ID: 31984462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore.
    Ramachandra TV; Sudarshan PB; Mahesh MK; Vinay S
    J Environ Manage; 2018 Jan; 206():1204-1210. PubMed ID: 29157887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation.
    Rai PK
    Int J Phytoremediation; 2010 Mar; 12(3):226-42. PubMed ID: 20734618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of the heavy metals Co, Cu, and Pb in sediments and Typha spp. And Phragmites mauritianus in three Zambian wetlands.
    Nabuyanda MM; Kelderman P; van Bruggen J; Irvine K
    J Environ Manage; 2022 Feb; 304():114133. PubMed ID: 34864515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal variations of some heavy metals in common reed (Phragmites australis (Cav.) Trin. Ex. Steudel) and narrow-leaved cattail (Typha angustifolia L.) in Eğirdir Lake (Turkey) and the possibility of using for phytoremediation of these macrophytes.
    Özçelik Ş; Tekin-Özan S
    Environ Sci Pollut Res Int; 2023 Nov; 30(52):112194-112205. PubMed ID: 37831255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of current anthropogenic activities on Blesbokspruit wetland microbiome and functions.
    Koloti LE; Nkuna R; Matambo TS
    Sci Total Environ; 2024 Mar; 915():170010. PubMed ID: 38219994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetland plants as indicators of heavy metal contamination.
    Phillips DP; Human LRD; Adams JB
    Mar Pollut Bull; 2015 Mar; 92(1-2):227-232. PubMed ID: 25599629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of heavy metals in a macrophyte Phragmites australis: implications to phytoremediation in the Arabian Peninsula wadis.
    Al-Homaidan AA; Al-Otaibi TG; El-Sheikh MA; Al-Ghanayem AA; Ameen F
    Environ Monit Assess; 2020 Feb; 192(3):202. PubMed ID: 32107648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contamination assessment of arsenic and heavy metals in a typical abandoned estuary wetland--a case study of the Yellow River Delta Natural Reserve.
    Xie Z; Sun Z; Zhang H; Zhai J
    Environ Monit Assess; 2014 Nov; 186(11):7211-32. PubMed ID: 25034234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes.
    Mishra VK; Upadhyaya AR; Pandey SK; Tripathi BD
    Bioresour Technol; 2008 Mar; 99(5):930-6. PubMed ID: 17475484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation potential of
    Tabinda AB; Irfan R; Yasar A; Iqbal A; Mahmood A
    Environ Technol; 2020 May; 41(12):1514-1519. PubMed ID: 30355050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation capability of Typha latifolia L. to uptake sediment toxic elements in the largest coastal wetland of the Persian Gulf.
    Haghnazar H; Sabbagh K; Johannesson KH; Pourakbar M; Aghayani E
    Mar Pollut Bull; 2023 Mar; 188():114699. PubMed ID: 36764150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater.
    Arivoli A; Mohanraj R; Seenivasan R
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13336-43. PubMed ID: 25940487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of wetlands to phytoremediate zinc, lead and chromium.
    Matodzi V; Legodi MA; Tavengwa NT
    Int J Phytoremediation; 2021; 23(8):857-865. PubMed ID: 33983858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.