BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36379746)

  • 21. Interactions between dietary flavonoids and the gut microbiome: a comprehensive review.
    Baky MH; Elshahed M; Wessjohann L; Farag MA
    Br J Nutr; 2022 Aug; 128(4):577-591. PubMed ID: 34511152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation.
    Gowd V; Bao T; Wang L; Huang Y; Chen S; Zheng X; Cui S; Chen W
    Food Chem; 2018 Dec; 269():618-627. PubMed ID: 30100480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Current knowledge of anthocyanin metabolism in the digestive tract: absorption, distribution, degradation, and interconversion.
    Gui H; Sun L; Liu R; Si X; Li D; Wang Y; Shu C; Sun X; Jiang Q; Qiao Y; Li B; Tian J
    Crit Rev Food Sci Nutr; 2023; 63(22):5953-5966. PubMed ID: 35057688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An overview on the cellular mechanisms of anthocyanins in maintaining intestinal integrity and function.
    Speciale A; Molonia MS; Muscarà C; Cristani M; Salamone FL; Saija A; Cimino F
    Fitoterapia; 2024 Jun; 175():105953. PubMed ID: 38588905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters.
    Barik SK; Russell WR; Moar KM; Cruickshank M; Scobbie L; Duncan G; Hoggard N
    J Nutr Biochem; 2020 Apr; 78():108325. PubMed ID: 31952012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fate of anthocyanins and antioxidant capacity in contents of the gastrointestinal tract of weanling pigs following black raspberry consumption.
    Wu X; Pittman HE; Prior RL
    J Agric Food Chem; 2006 Jan; 54(2):583-9. PubMed ID: 16417325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemopreventive Effect of Dietary Anthocyanins against Gastrointestinal Cancers: A Review of Recent Advances and Perspectives.
    Dharmawansa KVS; Hoskin DW; Rupasinghe HPV
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32911639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Health benefits of anthocyanin-containing foods, beverages, and supplements have unpredictable relation to gastrointestinal microbiota: A systematic review and meta-analysis of random clinical trials.
    Shu C; Wu S; Li H; Tian J
    Nutr Res; 2023 Aug; 116():48-59. PubMed ID: 37336096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies.
    Tsuda T
    Mol Nutr Food Res; 2012 Jan; 56(1):159-70. PubMed ID: 22102523
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anthocyanins-gut microbiota-health axis: A review.
    Liang A; Leonard W; Beasley JT; Fang Z; Zhang P; Ranadheera CS
    Crit Rev Food Sci Nutr; 2023 Mar; ():1-26. PubMed ID: 36927343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anthocyanins as inflammatory modulators and the role of the gut microbiota.
    Morais CA; de Rosso VV; Estadella D; Pisani LP
    J Nutr Biochem; 2016 Jul; 33():1-7. PubMed ID: 27260462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion.
    Correa-Betanzo J; Allen-Vercoe E; McDonald J; Schroeter K; Corredig M; Paliyath G
    Food Chem; 2014 Dec; 165():522-31. PubMed ID: 25038707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gastrointestinal metabolism and bioaccessibility of selected anthocyanins isolated from commonly consumed fruits.
    Victoria-Campos CI; Ornelas-Paz JJ; Rocha-Guzmán NE; Gallegos-Infante JA; Failla ML; Pérez-Martínez JD; Rios-Velasco C; Ibarra-Junquera V
    Food Chem; 2022 Jul; 383():132451. PubMed ID: 35182877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Citrus flavonoids and the intestinal barrier: Interactions and effects.
    Wang M; Zhao H; Wen X; Ho CT; Li S
    Compr Rev Food Sci Food Saf; 2021 Jan; 20(1):225-251. PubMed ID: 33443802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absorption, metabolism and bioavailability of flavonoids: a review.
    Chen L; Cao H; Huang Q; Xiao J; Teng H
    Crit Rev Food Sci Nutr; 2022; 62(28):7730-7742. PubMed ID: 34078189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dietary anthocyanins as potential natural modulators for the prevention and treatment of non-alcoholic fatty liver disease: A comprehensive review.
    Mehmood A; Zhao L; Wang Y; Pan F; Hao S; Zhang H; Iftikhar A; Usman M
    Food Res Int; 2021 Apr; 142():110180. PubMed ID: 33773656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health.
    Deehan EC; Duar RM; Armet AM; Perez-Muñoz ME; Jin M; Walter J
    Microbiol Spectr; 2017 Sep; 5(5):. PubMed ID: 28936943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microencapsulation of tannic acid for oral administration to inhibit carbohydrate digestion in the gastrointestinal tract.
    Zhao W; Iyer V; Flores FP; Donhowe E; Kong F
    Food Funct; 2013 Jun; 4(6):899-905. PubMed ID: 23648648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ferulic acid may target MyD88-mediated pro-inflammatory signaling - Implications for the health protection afforded by whole grains, anthocyanins, and coffee.
    McCarty MF; Assanga SBI
    Med Hypotheses; 2018 Sep; 118():114-120. PubMed ID: 30037596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-related arabinoxylan hydrolysis and fermentation in the gastrointestinal tract of broilers fed wheat-based diets.
    Bautil A; Verspreet J; Buyse J; Goos P; Bedford MR; Courtin CM
    Poult Sci; 2019 Oct; 98(10):4606-4621. PubMed ID: 30993340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.