BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 36379901)

  • 21. Tacrolimus pharmacokinetics and pharmacogenetics: influence of adenosine triphosphate-binding cassette B1 (ABCB1) and cytochrome (CYP) 3A polymorphisms.
    Op den Buijsch RA; Christiaans MH; Stolk LM; de Vries JE; Cheung CY; Undre NA; van Hooff JP; van Dieijen-Visser MP; Bekers O
    Fundam Clin Pharmacol; 2007 Aug; 21(4):427-35. PubMed ID: 17635182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CYP3A7, CYP3A4, and CYP3A5 genetic polymorphisms in recipients rather than donors influence tacrolimus concentrations in the early stages after liver transplantation.
    Dong Y; Xu Q; Li R; Tao Y; Zhang Q; Li J; Ma Z; Shen C; Zhong M; Wang Z; Qiu X
    Gene; 2022 Jan; 809():146007. PubMed ID: 34688813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic effects of CYP3A5 polymorphism on dose requirement and trough concentration of tacrolimus in renal transplant recipients.
    Chen P; Li J; Li J; Deng R; Fu Q; Chen J; Huang M; Chen X; Wang C
    J Clin Pharm Ther; 2017 Feb; 42(1):93-97. PubMed ID: 27885697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Composite CYP3A phenotypes influence tacrolimus dose-adjusted concentration in lung transplant recipients.
    Liu M; Shaver CM; Birdwell KA; Heeney SA; Shaffer CM; Van Driest SL
    Pharmacogenet Genomics; 2022 Jul; 32(5):209-217. PubMed ID: 35389944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CYP3A4*22 and CYP3A combined genotypes both correlate with tacrolimus disposition in pediatric heart transplant recipients.
    Gijsen VM; van Schaik RH; Elens L; Soldin OP; Soldin SJ; Koren G; de Wildt SN
    Pharmacogenomics; 2013 Jul; 14(9):1027-36. PubMed ID: 23837477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients.
    Zhang JJ; Liu SB; Xue L; Ding XL; Zhang H; Miao LY
    Int J Clin Pharmacol Ther; 2015 Sep; 53(9):728-36. PubMed ID: 26227094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of Pharmacogenetics on Intravenous Tacrolimus Exposure and Conversions to Oral Therapy.
    Pasternak AL; Marcath LA; Li Y; Nguyen V; Gersch CL; Rae JM; Frame D; Scappaticci G; Kidwell KM; Hertz DL
    Transplant Cell Ther; 2022 Jan; 28(1):19.e1-19.e7. PubMed ID: 34583027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tacrolimus pharmacokinetics are influenced by CYP3A5, age, and concomitant fluconazole in pediatric kidney transplant patients.
    Alghamdi A; Seay S; Hooper DK; Varnell CD; Darland L; Mizuno T; Lazear D; Ramsey LB
    Clin Transl Sci; 2023 Oct; 16(10):1768-1778. PubMed ID: 37340713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Age and Allele Variants of CYP3A5, CYP3A4, and POR Genes on the Pharmacokinetics of Cyclosporin A in Pediatric Renal Transplant Recipients From Serbia.
    Cvetković M; Zivković M; Bundalo M; Gojković I; Spasojević-Dimitrijeva B; Stanković A; Kostić M
    Ther Drug Monit; 2017 Dec; 39(6):589-595. PubMed ID: 29135906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of tacrolimus metabolism and dosage requirements based on CYP3A4 phenotype and CYP3A5(*)3 genotype in Chinese renal transplant recipients.
    Luo X; Zhu LJ; Cai NF; Zheng LY; Cheng ZN
    Acta Pharmacol Sin; 2016 Apr; 37(4):555-60. PubMed ID: 26924289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients.
    Haufroid V; Mourad M; Van Kerckhove V; Wawrzyniak J; De Meyer M; Eddour DC; Malaise J; Lison D; Squifflet JP; Wallemacq P
    Pharmacogenetics; 2004 Mar; 14(3):147-54. PubMed ID: 15167702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation.
    Zhang X; Liu ZH; Zheng JM; Chen ZH; Tang Z; Chen JS; Li LS
    Clin Transplant; 2005 Oct; 19(5):638-43. PubMed ID: 16146556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of CYP3A4*1B and CYP3A5*3 polymorphisms on the pharmacokinetics of cyclosporine and sirolimus in renal transplant recipients.
    Żochowska D; Wyzgał J; Pączek L
    Ann Transplant; 2012; 17(3):36-44. PubMed ID: 23018254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients.
    Shi Y; Li Y; Tang J; Zhang J; Zou Y; Cai B; Wang L
    Gene; 2013 Jan; 512(2):226-31. PubMed ID: 23107770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of CYP3A4*22 and POR*28 variations on the pharmacokinetics of tacrolimus in renal transplant recipients: a meta-analysis of 18 observational studies.
    Li Z; Wang X; Li D; Cheng S; Li Z; Guo H; Dong Y; Zheng Y; Li X
    BMC Nephrol; 2024 Feb; 25(1):48. PubMed ID: 38321419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implementation of Clinical Cytochrome P450 3A Genotyping for Tacrolimus Dosing in a Large Kidney Transplant Program.
    Tillman E; Nikirk MG; Chen J; Skaar TC; Shugg T; Maddatu JP; Sharfuddin AA; Eadon MT
    J Clin Pharmacol; 2023 Aug; 63(8):961-967. PubMed ID: 37042314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients.
    Elens L; Hesselink DA; Bouamar R; Budde K; de Fijter JW; De Meyer M; Mourad M; Kuypers DR; Haufroid V; van Gelder T; van Schaik RH
    Ther Drug Monit; 2014 Feb; 36(1):71-9. PubMed ID: 24061445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation.
    Hesselink DA; Bouamar R; Elens L; van Schaik RH; van Gelder T
    Clin Pharmacokinet; 2014 Feb; 53(2):123-39. PubMed ID: 24249597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients.
    Miura M; Satoh S; Kagaya H; Saito M; Numakura K; Tsuchiya N; Habuchi T
    Pharmacogenomics; 2011 Jul; 12(7):977-84. PubMed ID: 21635144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients.
    Kuypers DR; de Jonge H; Naesens M; Lerut E; Verbeke K; Vanrenterghem Y
    Clin Pharmacol Ther; 2007 Dec; 82(6):711-25. PubMed ID: 17495880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.