These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 36379945)
21. Extraction and characterization of ternary complexes between natural organic matter, cations, and oxyanions from a natural soil. Peel HR; Martin DP; Bednar AJ Chemosphere; 2017 Jun; 176():125-130. PubMed ID: 28260653 [TBL] [Abstract][Full Text] [Related]
22. Influence of organic management on As bioavailability: Soil quality and tomato As uptake. Stazi SR; Mancinelli R; Marabottini R; Allevato E; Radicetti E; Campiglia E; Marinari S Chemosphere; 2018 Nov; 211():352-359. PubMed ID: 30077931 [TBL] [Abstract][Full Text] [Related]
23. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Girouard E; Zagury GJ Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134 [TBL] [Abstract][Full Text] [Related]
24. Localization and speciation of arsenic in soil and desert plant Parkinsonia florida using μXRF and μXANES. Castillo-Michel H; Hernandez-Viezcas J; Dokken KM; Marcus MA; Peralta-Videa JR; Gardea-Torresdey JL Environ Sci Technol; 2011 Sep; 45(18):7848-54. PubMed ID: 21842861 [TBL] [Abstract][Full Text] [Related]
25. The prediction of PAHs bioavailability in soils using chemical methods: state of the art and future challenges. Cachada A; Pereira R; da Silva EF; Duarte AC Sci Total Environ; 2014 Feb; 472():463-80. PubMed ID: 24300458 [TBL] [Abstract][Full Text] [Related]
26. Distribution and availability of arsenic in soils from the industrialized urban area of Beijing, China. Luo W; Lu Y; Wang G; Shi Y; Wang T; Giesy JP Chemosphere; 2008 Jun; 72(5):797-802. PubMed ID: 18430453 [TBL] [Abstract][Full Text] [Related]
27. Speciation of Se and DOC in soil solution and their relation to Se bioavailability. Weng L; Vega FA; Supriatin S; Bussink W; Van Riemsdijk WH Environ Sci Technol; 2011 Jan; 45(1):262-7. PubMed ID: 21141820 [TBL] [Abstract][Full Text] [Related]
28. Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt. Shaheen SM; Kwon EE; Biswas JK; Tack FMG; Ok YS; Rinklebe J Chemosphere; 2017 Aug; 180():553-563. PubMed ID: 28432892 [TBL] [Abstract][Full Text] [Related]
29. Effects of sulfur application on selenium uptake and seed selenium speciation in soybean (Glycine max L.) grown in different soil types. Deng X; Zhao Z; Lv C; Zhang Z; Yuan L; Liu X Ecotoxicol Environ Saf; 2021 Feb; 209():111790. PubMed ID: 33316728 [TBL] [Abstract][Full Text] [Related]
30. The concentration and chemical speciation of arsenic in the Nanpan River, the upstream of the Pearl River, China. Yang S; Zhao N; Zhou D; Wei R; Yang B; Pan B Environ Sci Pollut Res Int; 2016 Apr; 23(7):6451-8. PubMed ID: 26627697 [TBL] [Abstract][Full Text] [Related]
31. Assessing the Brazilian prevention value for soil arsenic: Effects on emergence and growth of plant species relevant to tropical agroecosystems. Martins GC; de Oliveira C; Ribeiro PG; Natal-da-Luz T; Sousa JP; Bundschuh J; Guilherme LRG Sci Total Environ; 2019 Dec; 694():133663. PubMed ID: 31756827 [TBL] [Abstract][Full Text] [Related]
32. When soils become sediments: Large-scale storage of soils in sandpits and lakes and the impact of reduction kinetics on heavy metals and arsenic release to groundwater. Vink JPM; van Zomeren A; Dijkstra JJ; Comans RNJ Environ Pollut; 2017 Aug; 227():146-156. PubMed ID: 28458245 [TBL] [Abstract][Full Text] [Related]
33. Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils. Gonzaga MI; Ma LQ; Pacheco EP; dos Santos WM Int J Phytoremediation; 2012 Dec; 14(10):939-49. PubMed ID: 22908656 [TBL] [Abstract][Full Text] [Related]
34. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties. Im J; Yang K; Jho EH; Nam K Chemosphere; 2015 Nov; 138():253-8. PubMed ID: 26086811 [TBL] [Abstract][Full Text] [Related]
35. Effects of straw amendment on selenium aging in soils: Mechanism and influential factors. Wang D; Xue MY; Wang YK; Zhou DZ; Tang L; Cao SY; Wei YH; Yang C; Liang DL Sci Total Environ; 2019 Mar; 657():871-881. PubMed ID: 30677952 [TBL] [Abstract][Full Text] [Related]
36. The influence of hydrous ferric oxide, earthworms, and a hypertolerant plant on arsenic and iron bioavailability, fate, and transport in soils. Maki BC; Hodges KR; Ford SC; Sofield RM Environ Sci Pollut Res Int; 2017 Dec; 24(36):27710-27723. PubMed ID: 27778268 [TBL] [Abstract][Full Text] [Related]
37. NH Yang YP; Wang P; Yan HJ; Zhang HM; Cheng WD; Duan GL; Zhu YG Environ Pollut; 2019 Aug; 251():651-658. PubMed ID: 31108298 [TBL] [Abstract][Full Text] [Related]
38. Mitigation of rice cadmium (Cd) accumulation by joint application of organic amendments and selenium (Se) in high-Cd-contaminated soils. Liu N; Jiang Z; Li X; Liu H; Li N; Wei S Chemosphere; 2020 Feb; 241():125106. PubMed ID: 31683428 [TBL] [Abstract][Full Text] [Related]
39. Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Huang RQ; Gao SF; Wang WL; Staunton S; Wang G Sci Total Environ; 2006 Sep; 368(2-3):531-41. PubMed ID: 16624379 [TBL] [Abstract][Full Text] [Related]
40. Simultaneous measurement of aqueous redox-sensitive elements and their species across the soil-water interface. Yuan ZF; Gustave W; Sekar R; Bridge J; Wang JY; Feng WJ; Guo B; Chen Z J Environ Sci (China); 2021 Apr; 102():1-10. PubMed ID: 33637235 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]