These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36379960)

  • 41. Achromatic temporal-frequency responses of human lateral geniculate nucleus and primary visual cortex.
    Bayram A; Karahan E; Bilgiç B; Ademoglu A; Demiralp T
    Vision Res; 2016 Oct; 127():177-185. PubMed ID: 27613997
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model.
    Yoon K; Lee W; Lee JE; Xu L; Croce P; Foley L; Yoo SS
    PLoS One; 2019; 14(10):e0224311. PubMed ID: 31648261
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Color responses of the human lateral geniculate nucleus: [corrected] selective amplification of S-cone signals between the lateral geniculate nucleno and primary visual cortex measured with high-field fMRI.
    Mullen KT; Dumoulin SO; Hess RF
    Eur J Neurosci; 2008 Nov; 28(9):1911-23. PubMed ID: 18973604
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SPatiotemporal-ENcoded acoustic radiation force imaging of focused ultrasound.
    Qi X; Sun J; Zhu J; Kong D; Roberts N; Dong Y; Huang X; He Q; Xing H; Gong Q
    Front Hum Neurosci; 2023; 17():1184629. PubMed ID: 37180550
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Current state of clinical ultrasound neuromodulation.
    Matt E; Radjenovic S; Mitterwallner M; Beisteiner R
    Front Neurosci; 2024; 18():1420255. PubMed ID: 38962179
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses.
    Kubová Z; Kuba M; Juran J; Blakemore C
    Vision Res; 1996 Jan; 36(1):181-90. PubMed ID: 8746252
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps.
    Barnikol UB; Amunts K; Dammers J; Mohlberg H; Fieseler T; Malikovic A; Zilles K; Niedeggen M; Tass PA
    Neuroimage; 2006 May; 31(1):86-108. PubMed ID: 16480895
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Subcortical contributions to the surface-recorded flash-VEP in the awake macaque.
    Schroeder CE; Tenke CE; Givre SJ
    Electroencephalogr Clin Neurophysiol; 1992; 84(3):219-31. PubMed ID: 1375881
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visual evoked and event-related brain potentials in HIV-infected adults: a longitudinal study over 2.5 years.
    Szanyi J; Kremlacek J; Kubova Z; Kuba M; Gebousky P; Kapla J; Szanyi J; Vit F; Langrova J
    Doc Ophthalmol; 2019 Oct; 139(2):83-97. PubMed ID: 30993574
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Signal Propagation in the Human Visual Pathways: An Effective Connectivity Analysis.
    Youssofzadeh V; Prasad G; Fagan AJ; Reilly RB; Martens S; Meaney JF; Wong-Lin K
    J Neurosci; 2015 Sep; 35(39):13501-10. PubMed ID: 26424894
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intracellular,
    Sedigh-Sarvestani M; Vigeland L; Fernandez-Lamo I; Taylor MM; Palmer LA; Contreras D
    J Neurosci; 2017 May; 37(21):5250-5262. PubMed ID: 28438969
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.
    Bayram A; Bayraktaroglu Z; Karahan E; Erdogan B; Bilgic B; Ozker M; Kasikci I; Duru AD; Ademoglu A; Oztürk C; Arikan K; Tarhan N; Demiralp T
    Clin EEG Neurosci; 2011 Apr; 42(2):98-106. PubMed ID: 21675599
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulation effect of mouse hippocampal neural oscillations by closed-loop transcranial ultrasound stimulation.
    Dong S; Yan J; Xie Z; Yuan Y; Ji H
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36541474
    [No Abstract]   [Full Text] [Related]  

  • 54. Measurement of visual evoked potential during and after periods of pulsed magnetic field exposure.
    Glover PM; Eldeghaidy S; Mistry TR; Gowland PA
    J Magn Reson Imaging; 2007 Nov; 26(5):1353-6. PubMed ID: 17969178
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The relationship between the visual evoked potential and the gamma band investigated by blind and semi-blind methods.
    Porcaro C; Ostwald D; Hadjipapas A; Barnes GR; Bagshaw AP
    Neuroimage; 2011 Jun; 56(3):1059-71. PubMed ID: 21396460
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Brain Modulatory Effects by Low-Intensity Transcranial Ultrasound Stimulation (TUS): A Systematic Review on Both Animal and Human Studies.
    Wang P; Zhang J; Yu J; Smith C; Feng W
    Front Neurosci; 2019; 13():696. PubMed ID: 31396029
    [No Abstract]   [Full Text] [Related]  

  • 57. Retinal and Nonretinal Contributions to Extraclassical Surround Suppression in the Lateral Geniculate Nucleus.
    Fisher TG; Alitto HJ; Usrey WM
    J Neurosci; 2017 Jan; 37(1):226-235. PubMed ID: 28053044
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Paired-pulse behavior of visually evoked potentials recorded in human visual cortex using patterned paired-pulse stimulation.
    Höffken O; Grehl T; Dinse HR; Tegenthoff M; Bach M
    Exp Brain Res; 2008 Jul; 188(3):427-35. PubMed ID: 18427792
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Augmentation of Retinogeniculate Communication during Thalamic Burst Mode.
    Alitto H; Rathbun DL; Vandeleest JJ; Alexander PC; Usrey WM
    J Neurosci; 2019 Jul; 39(29):5697-5710. PubMed ID: 31109958
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuromodulation with single-element transcranial focused ultrasound in human thalamus.
    Legon W; Ai L; Bansal P; Mueller JK
    Hum Brain Mapp; 2018 May; 39(5):1995-2006. PubMed ID: 29380485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.