These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36380459)

  • 1. Impact of ergosterol content on acetic and lactic acids toxicity to Saccharomyces cerevisiae.
    Ferraz L; Vorauer-Uhl K; Sauer M; Sousa MJ; Branduardi P
    Yeast; 2023 Mar; 40(3-4):152-165. PubMed ID: 36380459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of Ecm22 improves ergosterol biosynthesis in Saccharomyces cerevisiae.
    Wang SQ; Wang T; Liu JF; Deng L; Wang F
    Lett Appl Microbiol; 2018 Nov; 67(5):484-490. PubMed ID: 30098030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in lipid metabolism convey acid tolerance in
    Guo ZP; Khoomrung S; Nielsen J; Olsson L
    Biotechnol Biofuels; 2018; 11():297. PubMed ID: 30450126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein aggregation and membrane lipid modifications under lactic acid stress in wild type and OPI1 deleted Saccharomyces cerevisiae strains.
    Berterame NM; Porro D; Ami D; Branduardi P
    Microb Cell Fact; 2016 Feb; 15():39. PubMed ID: 26887851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae.
    Zhu P; Luo R; Li Y; Chen X
    Microbiol Spectr; 2022 Dec; 10(6):e0227722. PubMed ID: 36354322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
    Endo A; Nakamura T; Shima J
    FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.
    Zhang K; Tong M; Gao K; Di Y; Wang P; Zhang C; Wu X; Zheng D
    J Ind Microbiol Biotechnol; 2015 Feb; 42(2):207-18. PubMed ID: 25475753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane lipid variability in Saccharomyces cerevisiae wine strains rehydrated in the presence of metabolic activators.
    Díaz-Hellín P; Gómez-Alonso S; Borrull A; Rozès N; Cordero-Otero R; Úbeda J
    J Agric Food Chem; 2014 Aug; 62(34):8679-85. PubMed ID: 25007414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.
    Mira NP; Palma M; Guerreiro JF; Sá-Correia I
    Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of lactic acid tolerance by cocktail δ-integration strategy and identification of the transcription factor PDR3 responsible for lactic acid tolerance in yeast Saccharomyces cerevisiae.
    Yamada R; Kumata Y; Mitsui R; Matsumoto T; Ogino H
    World J Microbiol Biotechnol; 2021 Jan; 37(2):19. PubMed ID: 33428004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pdr18 is involved in yeast response to acetic acid stress counteracting the decrease of plasma membrane ergosterol content and order.
    Godinho CP; Prata CS; Pinto SN; Cardoso C; Bandarra NM; Fernandes F; Sá-Correia I
    Sci Rep; 2018 May; 8(1):7860. PubMed ID: 29777118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Ergosterol Biosynthesis in
    Jordá T; Puig S
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32679672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose.
    Matsushika A; Goshima T; Hoshino T
    Microb Cell Fact; 2014 Jan; 13():16. PubMed ID: 24467867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous ergosterol protects Saccharomyces cerevisiae from D-limonene stress.
    Liu J; Zhu Y; Du G; Zhou J; Chen J
    J Appl Microbiol; 2013 Feb; 114(2):482-91. PubMed ID: 23082823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol.
    Samakkarn W; Ratanakhanokchai K; Soontorngun N
    Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oleic acid and ergosterol supplementation mitigates oxidative stress in wine strains of Saccharomyces cerevisiae.
    Landolfo S; Zara G; Zara S; Budroni M; Ciani M; Mannazzu I
    Int J Food Microbiol; 2010 Jul; 141(3):229-35. PubMed ID: 20626100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The wide-ranging phenotypes of ergosterol biosynthesis mutants, and implications for microbial cell factories.
    Johnston EJ; Moses T; Rosser SJ
    Yeast; 2020 Jan; 37(1):27-44. PubMed ID: 31800968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol.
    Wang Y; Zhang S; Liu H; Zhang L; Yi C; Li H
    J Basic Microbiol; 2015 Dec; 55(12):1417-26. PubMed ID: 26265555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae.
    He X; Guo X; Liu N; Zhang B
    Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.