These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 36380594)
1. Breaking the Volcano-Shaped Relationship for Highly Efficient Electrocatalytic Nitrogen Reduction: A Computational Guideline. Gao D; Yi D; Sun C; Yang Y; Wang X ACS Appl Mater Interfaces; 2022 Nov; 14(47):52806-52814. PubMed ID: 36380594 [TBL] [Abstract][Full Text] [Related]
2. A High-Throughput Screening toward Efficient Nitrogen Fixation: Transition Metal Single-Atom Catalysts Anchored on an Emerging π-π Conjugated Graphitic Carbon Nitride (g-C Zhang Q; Wang X; Zhang F; Fang C; Liu D; Zhou Q ACS Appl Mater Interfaces; 2023 Mar; 15(9):11812-11826. PubMed ID: 36808933 [TBL] [Abstract][Full Text] [Related]
3. Bimetallic Pairs Supported on Graphene as Efficient Electrocatalysts for Nitrogen Fixation: Search for the Optimal Coordination Atoms. Hu R; Li Y; Zeng Q; Wang F; Shang J ChemSusChem; 2020 Jul; 13(14):3636-3644. PubMed ID: 32367626 [TBL] [Abstract][Full Text] [Related]
4. Computational screening of highly selective and active electrocatalytic nitrogen reduction on single-atom-embedded artificial holey SnN Wang X; Zhang Q; Zhou J J Colloid Interface Sci; 2022 Mar; 610():546-556. PubMed ID: 34839915 [TBL] [Abstract][Full Text] [Related]
5. Electrocatalytic Mechanism of N Lv SY; Huang CX; Li G; Yang LM ACS Appl Mater Interfaces; 2021 Jun; 13(25):29641-29653. PubMed ID: 34143610 [TBL] [Abstract][Full Text] [Related]
6. Advancing electrochemical nitrogen reduction: Efficacy of two-dimensional SiP layered structures with single-atom transition metal catalysts. Li Q; Li W; Liu D; Ma Z; Ye Y; Zhang Y; Chen Q; Cheng Z; Chen Y; Sa R J Colloid Interface Sci; 2024 Aug; 668():399-411. PubMed ID: 38685165 [TBL] [Abstract][Full Text] [Related]
7. Regulating the Coordination Environment of Single-Atom Catalysts Anchored on Thiophene Linked Porphyrin for an Efficient Nitrogen Reduction Reaction. Sathishkumar N; Chen HT ACS Appl Mater Interfaces; 2023 Mar; 15(12):15545-15560. PubMed ID: 36931875 [TBL] [Abstract][Full Text] [Related]
8. First-Principles Study of Bimetallic Pairs Embedded on Graphene Co-Doped with N and O for N Dong H; Sun H; Xing G; Liu S; Duan X; Liu J Molecules; 2024 Feb; 29(4):. PubMed ID: 38398531 [TBL] [Abstract][Full Text] [Related]
9. Screening of transition metal single-atom catalysts supported by a WS Li R; Guo W Phys Chem Chem Phys; 2022 Jun; 24(21):13384-13398. PubMed ID: 35608279 [TBL] [Abstract][Full Text] [Related]
10. High efficiency carbon nanotubes-based single-atom catalysts for nitrogen reduction. Liu W; Guo K; Xie Y; Liu S; Chen L; Xu J Sci Rep; 2023 Jun; 13(1):9926. PubMed ID: 37336942 [TBL] [Abstract][Full Text] [Related]
11. Rational design of bimetallic MBene for efficient electrocatalytic nitrogen reduction. Zhang Y; Guo Z; Fang Y; Tang C; Meng F; Miao N; Sa B; Zhou J; Sun Z J Colloid Interface Sci; 2024 Sep; 670():687-697. PubMed ID: 38788436 [TBL] [Abstract][Full Text] [Related]
12. Tailoring the coordination environment of double-atom catalysts to boost electrocatalytic nitrogen reduction: a first-principles study. Wu J; Wu D; Li H; Song Y; Lv W; Yu X; Ma D Nanoscale; 2023 Oct; 15(39):16056-16067. PubMed ID: 37728053 [TBL] [Abstract][Full Text] [Related]
13. V (Nb) Single Atoms Anchored by the Edge of a Graphene Armchair Nanoribbon for Efficient Electrocatalytic Nitrogen Reduction: A Theoretical Study. Ma Z; Lv P; Wu D; Li X; Chu K; Ma D; Jia Y Inorg Chem; 2022 Nov; 61(44):17864-17872. PubMed ID: 36287643 [TBL] [Abstract][Full Text] [Related]
14. Anchoring an Fe Dimer on Nitrogen-Doped Graphene toward Highly Efficient Electrocatalytic Ammonia Synthesis. Zhang Z; Huang X; Xu H ACS Appl Mater Interfaces; 2021 Sep; 13(36):43632-43640. PubMed ID: 34460221 [TBL] [Abstract][Full Text] [Related]
15. Computational Insight into Metallated Graphynes as Single Atom Electrocatalysts for Nitrogen Fixation. Hu X; Xiong L; Fang WH; Su NQ ACS Appl Mater Interfaces; 2022 Jun; 14(24):27861-27872. PubMed ID: 35678821 [TBL] [Abstract][Full Text] [Related]
16. Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: a first-principles study. Zheng X; Yao Y; Wang Y; Liu Y Nanoscale; 2020 May; 12(17):9696-9707. PubMed ID: 32323698 [TBL] [Abstract][Full Text] [Related]
17. Computational screening of MBene monolayers with high electrocatalytic activity for the nitrogen reduction reaction. Li Y; Li L; Huang R; Wen Y Nanoscale; 2021 Sep; 13(35):15002-15009. PubMed ID: 34533185 [TBL] [Abstract][Full Text] [Related]
18. The novel π-d conjugated TM Sun Y; Shi W; Fu YQ; Yu H; Wang Z; Li Z J Colloid Interface Sci; 2023 Nov; 650(Pt A):1-12. PubMed ID: 37392494 [TBL] [Abstract][Full Text] [Related]
19. Density functional theory study of nitrogen-doped black phosphorene doped with monatomic transition metals as high performance electrocatalysts for N Liu X; Li C; Xu F; Fan G; Xu H Nanotechnology; 2022 Mar; 33(24):. PubMed ID: 35226886 [TBL] [Abstract][Full Text] [Related]
20. Machine learning-driven shortening the screening process towards high-performance nitrogen reduction reaction electrocatalysts with four-step screening strategy. He C; Chen D; Zhang WX J Colloid Interface Sci; 2024 Dec; 676():22-32. PubMed ID: 39018807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]