These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36380753)

  • 1. ALiCE
    Das Gupta M; Flaskamp Y; Roentgen R; Juergens H; Gimenez JA; Albrecht F; Hemmerich J; Ahmad Arfi Z; Neuser J; Spiegel H; Yeliseev A; Song L; Qiu J; Williams C; Finnern R
    bioRxiv; 2022 Nov; ():. PubMed ID: 36380753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling eukaryotic cell-free protein synthesis achieved with the versatile and high-yielding tobacco BY-2 cell lysate.
    Gupta MD; Flaskamp Y; Roentgen R; Juergens H; Armero-Gimenez J; Albrecht F; Hemmerich J; Arfi ZA; Neuser J; Spiegel H; Schillberg S; Yeliseev A; Song L; Qiu J; Williams C; Finnern R
    Biotechnol Bioeng; 2023 Oct; 120(10):2890-2906. PubMed ID: 37376851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid screening and scaled manufacture of immunogenic virus-like particles in a tobacco BY-2 cell-free protein synthesis system.
    Armero-Gimenez J; Wilbers R; Schots A; Williams C; Finnern R
    Front Immunol; 2023; 14():1088852. PubMed ID: 36776898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishing a Eukaryotic
    Zhang L; Liu WQ; Li J
    Front Bioeng Biotechnol; 2020; 8():536. PubMed ID: 32626695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A versatile coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates.
    Buntru M; Vogel S; Stoff K; Spiegel H; Schillberg S
    Biotechnol Bioeng; 2015 May; 112(5):867-78. PubMed ID: 25421615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tobacco BY-2 cell-free lysate: an alternative and highly-productive plant-based in vitro translation system.
    Buntru M; Vogel S; Spiegel H; Schillberg S
    BMC Biotechnol; 2014 May; 14():37. PubMed ID: 24886601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishing a High-Yielding Cell-Free Protein Synthesis Platform Derived from Vibrio natriegens.
    Des Soye BJ; Davidson SR; Weinstock MT; Gibson DG; Jewett MC
    ACS Synth Biol; 2018 Sep; 7(9):2245-2255. PubMed ID: 30107122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation and Alternative Translation on Wheat Germ Cell-Free Protein Synthesis of the DHBV Large Envelope Protein.
    David G; Fogeron ML; Montserret R; Lecoq L; Page A; Delolme F; Nassal M; Böckmann A
    Front Mol Biosci; 2019; 6():138. PubMed ID: 31850370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-free protein synthesis: advances on production process for biopharmaceuticals and immunobiological products.
    Chiba CH; Knirsch MC; Azzoni AR; Moreira AR; Stephano MA
    Biotechniques; 2021 Feb; 70(2):126-133. PubMed ID: 33467890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis.
    Hodgman CE; Jewett MC
    Biotechnol Bioeng; 2013 Oct; 110(10):2643-54. PubMed ID: 23832321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vesicle-based cell-free synthesis of short and long unspecific peroxygenases.
    Walter RM; Zemella A; Schramm M; Kiebist J; Kubick S
    Front Bioeng Biotechnol; 2022; 10():964396. PubMed ID: 36394036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrofoam and oxygen headspace bioreactors improve cell-free therapeutic protein production yields through enhanced oxygen transport.
    Nelson JAD; Barnett RJ; Hunt JP; Foutz I; Welton M; Bundy BC
    Biotechnol Prog; 2021 Mar; 37(2):e3079. PubMed ID: 32920987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of Energy Metabolism through Growth Media Reformulation Enables a 24-Hour Workflow for Cell-Free Expression.
    Levine MZ; So B; Mullin AC; Fanter R; Dillard K; Watts KR; La Frano MR; Oza JP
    ACS Synth Biol; 2020 Oct; 9(10):2765-2774. PubMed ID: 32835484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and comparison of cell-free protein synthesis systems derived from typical bacterial chassis.
    Zhang L; Lin X; Wang T; Guo W; Lu Y
    Bioresour Bioprocess; 2021; 8(1):58. PubMed ID: 34249606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Reconstitution of Membrane Proteins Derived From Eukaryotic Cell-Free Systems.
    Dondapati SK; Lübberding H; Zemella A; Thoring L; Wüstenhagen DA; Kubick S
    Front Pharmacol; 2019; 10():917. PubMed ID: 31543813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile Cell-Free Protein Synthesis Systems Based on Chinese Hamster Ovary Cells.
    Thoring L; Kubick S
    Methods Mol Biol; 2018; 1850():289-308. PubMed ID: 30242694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology.
    Fogeron ML; Lecoq L; Cole L; Harbers M; Böckmann A
    Front Mol Biosci; 2021; 8():639587. PubMed ID: 33842544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the Cell-Free Protein Synthesis System for Biomanufacturing of Monomeric Human Filaggrin.
    Kim J; Copeland CE; Seki K; Vögeli B; Kwon YC
    Front Bioeng Biotechnol; 2020; 8():590341. PubMed ID: 33195157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-yield production of "difficult-to-express" proteins in a continuous exchange cell-free system based on CHO cell lysates.
    Thoring L; Dondapati SK; Stech M; Wüstenhagen DA; Kubick S
    Sci Rep; 2017 Sep; 7(1):11710. PubMed ID: 28916746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a CHO-Based Cell-Free Platform for Synthesis of Active Monoclonal Antibodies.
    Martin RW; Majewska NI; Chen CX; Albanetti TE; Jimenez RBC; Schmelzer AE; Jewett MC; Roy V
    ACS Synth Biol; 2017 Jul; 6(7):1370-1379. PubMed ID: 28350472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.