These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36380845)

  • 1. A Hybrid Microstructural-Continuum Multiscale Approach for Modeling Hyperelastic Fibrous Soft Tissue.
    Nikpasand M; Mahutga RR; Bersie-Larson LM; Gacek E; Barocas VH
    J Elast; 2021 Aug; 145(1-2):295-319. PubMed ID: 36380845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars.
    Gruber G; Nicolini LF; Ribeiro M; Lerchl T; Wilke HJ; Jaramillo HE; Senner V; Kirschke JS; Nispel K
    Front Bioeng Biotechnol; 2024; 12():1391957. PubMed ID: 38903189
    [No Abstract]   [Full Text] [Related]  

  • 3. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of Holzapfel-Gasser-Ogden collateral ligament properties in a hybrid post-arthroplasty knee joint model for laxity testing.
    Milakovic L; Dandois F; Fehervary H; Scheys L
    Comput Methods Biomech Biomed Engin; 2024 Sep; 27(12):1680-1690. PubMed ID: 37668078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale mechanics of the cervical facet capsular ligament, with particular emphasis on anomalous fiber realignment prior to tissue failure.
    Zhang S; Zarei V; Winkelstein BA; Barocas VH
    Biomech Model Mechanobiol; 2018 Feb; 17(1):133-145. PubMed ID: 28821971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.
    Fan R; Sacks MS
    J Biomech; 2014 Jun; 47(9):2043-54. PubMed ID: 24746842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
    Sacks MS; Motiwale S; Goodbrake C; Zhang W
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36193891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image-based multiscale mechanical modeling shows the importance of structural heterogeneity in the human lumbar facet capsular ligament.
    Zarei V; Liu CJ; Claeson AA; Akkin T; Barocas VH
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1425-1438. PubMed ID: 28361294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new strain energy function for the hyperelastic modelling of ligaments and tendons based on fascicle microstructure.
    Shearer T
    J Biomech; 2015 Jan; 48(2):290-7. PubMed ID: 25482660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear Wave Propagation and Estimation of Material Parameters in a Nonlinear, Fibrous Material.
    Hou Z; Okamoto RJ; Bayly PV
    J Biomech Eng; 2020 May; 142(5):0510101-05101010. PubMed ID: 31513702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Lumbar Facet Capsular Ligament Becomes More Anisotropic and the Fibers Become Stiffer With Intervertebral Disc and Facet Joint Degeneration.
    Middendorf JM; Budrow CJ; Ellingson AM; Barocas VH
    J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36478033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating fiber recruitment in hyperelastic modeling of vascular tissues by means of kinematic average.
    Lu J; He X
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1833-1850. PubMed ID: 34173928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear wave speeds in nearly-incompressible fibrous materials with two fiber families.
    Hou Z; Bayly PV; Okamoto RJ
    J Acoust Soc Am; 2021 Feb; 149(2):1097. PubMed ID: 33639778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The non-affine fiber network solver: A multiscale fiber network material model for finite-element analysis.
    Mahutga RR; Barocas VH; Alford PW
    J Mech Behav Biomed Mater; 2023 Aug; 144():105967. PubMed ID: 37329673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional anisotropic unified continuum model for simulating the healing of damaged soft biological tissues.
    Zuo D; Zhu M; Chen D; Xue Q; Avril S; Hackl K; He Y
    Biomech Model Mechanobiol; 2024 Dec; 23(6):2193-2212. PubMed ID: 39414653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic hyperelastic behavior of soft biological tissues.
    Chen ZW; Joli P; Feng ZQ
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1436-44. PubMed ID: 25127194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrous finite element modeling of the optic nerve head region.
    Islam MR; Ji F; Bansal M; Hua Y; Sigal IA
    Acta Biomater; 2024 Feb; 175():123-137. PubMed ID: 38147935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histology-informed multiscale modeling of human brain white matter.
    Saeidi S; Kainz MP; Dalbosco M; Terzano M; Holzapfel GA
    Sci Rep; 2023 Nov; 13(1):19641. PubMed ID: 37949949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wrinkling instabilities for biologically relevant fiber-reinforced composite materials with a case study of Neo-Hookean/Ogden-Gasser-Holzapfel bilayer.
    Nguyen N; Nath N; Deseri L; Tzeng E; Velankar SS; Pocivavsek L
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2375-2395. PubMed ID: 32535739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation and validation of constitutive relations for human dermis mechanical response.
    Aldieri A; Terzini M; Bignardi C; Zanetti EM; Audenino AL
    Med Biol Eng Comput; 2018 Nov; 56(11):2083-2093. PubMed ID: 29777504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.