BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36381243)

  • 1. MLK3 silence suppressed osteogenic differentiation and delayed bone formation via influencing the bone metabolism and disturbing MAPK signaling.
    Yang X; Mai YX; Wei L; Peng LY; Pang FX; Wang LJ; Li ZP; Zhang JF; Jin AM
    J Orthop Translat; 2023 Jan; 38():98-105. PubMed ID: 36381243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of MLK3 signaling impedes ulcer healing by modulating MAPK signaling in mouse intestinal mucosa.
    Kovalenko PL; Kunovska L; Chen J; Gallo KA; Basson MD
    Am J Physiol Gastrointest Liver Physiol; 2012 Oct; 303(8):G951-60. PubMed ID: 22917630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Irisin reduces bone fracture by facilitating osteogenesis and antagonizing TGF-β/Smad signaling in a growing mouse model of osteogenesis imperfecta.
    Sun B; Wu H; Lu J; Zhang R; Shen X; Gu Y; Shi C; Zhang Y; Yuan W
    J Orthop Translat; 2023 Jan; 38():175-189. PubMed ID: 36439629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knockdown of SERPINB2 enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells via activation of the Wnt/β-catenin signalling pathway.
    Hang K; Ying L; Bai J; Wang Y; Kuang Z; Xue D; Pan Z
    Stem Cell Res Ther; 2021 Oct; 12(1):525. PubMed ID: 34620242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway.
    Li X; Zheng Y; Zheng Y; Huang Y; Zhang Y; Jia L; Li W
    Stem Cell Res Ther; 2018 Aug; 9(1):232. PubMed ID: 30170617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ETV2 promotes osteogenic differentiation of human dental pulp stem cells through the ERK/MAPK and PI3K-Akt signaling pathways.
    Li J; Du H; Ji X; Chen Y; Li Y; Heng BC; Xu J
    Stem Cell Res Ther; 2022 Oct; 13(1):495. PubMed ID: 36195958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mir24-2-5p suppresses the osteogenic differentiation with Gnai3 inhibition presenting a direct target via inactivating JNK-p38 MAPK signaling axis.
    Meng L; Yuan L; Ni J; Fang M; Guo S; Cai H; Qin J; Cai Q; Zhang M; Hu F; Ma J; Zhang Y
    Int J Biol Sci; 2021; 17(15):4238-4253. PubMed ID: 34803495
    [No Abstract]   [Full Text] [Related]  

  • 8. Exopolysaccharide of Enterococcus faecium L15 promotes the osteogenic differentiation of human dental pulp stem cells via p38 MAPK pathway.
    Kim H; Oh N; Kwon M; Kwon OH; Ku S; Seo J; Roh S
    Stem Cell Res Ther; 2022 Sep; 13(1):446. PubMed ID: 36056447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MLK3 regulates bone development downstream of the faciogenital dysplasia protein FGD1 in mice.
    Zou W; Greenblatt MB; Shim JH; Kant S; Zhai B; Lotinun S; Brady N; Hu DZ; Gygi SP; Baron R; Davis RJ; Jones D; Glimcher LH
    J Clin Invest; 2011 Nov; 121(11):4383-92. PubMed ID: 21965325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-378 Suppressed Osteogenesis of MSCs and Impaired Bone Formation via Inactivating Wnt/β-Catenin Signaling.
    Feng L; Zhang JF; Shi L; Yang ZM; Wu TY; Wang HX; Lin WP; Lu YF; Lo JHT; Zhu DH; Li G
    Mol Ther Nucleic Acids; 2020 Sep; 21():1017-1028. PubMed ID: 32829178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin enhances osteogenic differentiation of dental pulp mesenchymal stem cells by regulating MAPK pathways and promotes the efficiency of bone regeneration in calvarial bone defects.
    Chan YH; Ho KN; Lee YC; Chou MJ; Lew WZ; Huang HM; Lai PC; Feng SW
    Stem Cell Res Ther; 2022 Feb; 13(1):73. PubMed ID: 35183254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TGF-β inhibits osteogenesis by upregulating the expression of ubiquitin ligase SMURF1 via MAPK-ERK signaling.
    Sun X; Xie Z; Ma Y; Pan X; Wang J; Chen Z; Shi P
    J Cell Physiol; 2018 Jan; 233(1):596-606. PubMed ID: 28322449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MLK3 promotes metabolic dysfunction induced by saturated fatty acid-enriched diet.
    Gadang V; Kohli R; Myronovych A; Hui DY; Perez-Tilve D; Jaeschke A
    Am J Physiol Endocrinol Metab; 2013 Aug; 305(4):E549-56. PubMed ID: 23860122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of Bcl-3 delays bone fracture healing through activating NF-κB signaling in mesenchymal stem cells.
    Wang F; Guo J; Wang Y; Hu Y; Zhang H; Chen J; Jing Y; Cao L; Chen X; Su J
    J Orthop Translat; 2022 Jul; 35():72-80. PubMed ID: 36186660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fucoidan promotes osteoblast differentiation via JNK- and ERK-dependent BMP2-Smad 1/5/8 signaling in human mesenchymal stem cells.
    Kim BS; Kang HJ; Park JY; Lee J
    Exp Mol Med; 2015 Jan; 47(1):e128. PubMed ID: 25572360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MLK3 Signaling in Cancer Invasion.
    Rattanasinchai C; Gallo KA
    Cancers (Basel); 2016 May; 8(5):. PubMed ID: 27213454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knockdown of SLC41A1 magnesium transporter promotes mineralization and attenuates magnesium inhibition during osteogenesis of mesenchymal stromal cells.
    Tsao YT; Shih YY; Liu YA; Liu YS; Lee OK
    Stem Cell Res Ther; 2017 Feb; 8(1):39. PubMed ID: 28222767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing effects of myricetin on the osteogenic differentiation of human periodontal ligament stem cells via BMP-2/Smad and ERK/JNK/p38 mitogen-activated protein kinase signaling pathway.
    Kim HY; Park SY; Choung SY
    Eur J Pharmacol; 2018 Sep; 834():84-91. PubMed ID: 30012495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IGFBP5 enhances osteogenic differentiation potential of periodontal ligament stem cells and Wharton's jelly umbilical cord stem cells, via the JNK and MEK/Erk signalling pathways.
    Wang Y; Jia Z; Diao S; Lin X; Lian X; Wang L; Dong R; Liu D; Fan Z
    Cell Prolif; 2016 Oct; 49(5):618-27. PubMed ID: 27484838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irisin promotes fracture healing by improving osteogenesis and angiogenesis.
    Kan T; He Z; Du J; Xu M; Cui J; Han X; Tong D; Li H; Yan M; Yu Z
    J Orthop Translat; 2022 Nov; 37():37-45. PubMed ID: 36196152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.