These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36381500)
1. Multimodal Fusion of Smart Home and Text-based Behavior Markers for Clinical Assessment Prediction. Sprint G; Cook DJ; Schmitter-Edgecombe M; Holder LB ACM Trans Comput Healthc; 2022 Oct; 3(4):. PubMed ID: 36381500 [TBL] [Abstract][Full Text] [Related]
2. Automated Cognitive Health Assessment From Smart Home-Based Behavior Data. Dawadi PN; Cook DJ; Schmitter-Edgecombe M IEEE J Biomed Health Inform; 2016 Jul; 20(4):1188-94. PubMed ID: 26292348 [TBL] [Abstract][Full Text] [Related]
3. Automated assessment of cognitive health using smart home technologies. Dawadi PN; Cook DJ; Schmitter-Edgecombe M; Parsey C Technol Health Care; 2013; 21(4):323-43. PubMed ID: 23949177 [TBL] [Abstract][Full Text] [Related]
4. Validation of a Remote and Fully Automated Story Recall Task to Assess for Early Cognitive Impairment in Older Adults: Longitudinal Case-Control Observational Study. Skirrow C; Meszaros M; Meepegama U; Lenain R; Papp KV; Weston J; Fristed E JMIR Aging; 2022 Sep; 5(3):e37090. PubMed ID: 36178715 [TBL] [Abstract][Full Text] [Related]
5. Modeling Patterns of Activities using Activity Curves. Dawadi PN; Cook DJ; Schmitter-Edgecombe M Pervasive Mob Comput; 2016 Jun; 28():51-68. PubMed ID: 27346990 [TBL] [Abstract][Full Text] [Related]
6. Fusing Ambient and Mobile Sensor Features Into a Behaviorome for Predicting Clinical Health Scores. Cook DJ; Schmitter-Edgecombe M IEEE Access; 2021; 9():65033-65043. PubMed ID: 34017671 [TBL] [Abstract][Full Text] [Related]
7. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
8. Smart Home Technology: A New Approach for Performance Measurements of Activities of Daily Living and Prediction of Mild Cognitive Impairment in Older Adults. Lussier M; Adam S; Chikhaoui B; Consel C; Gagnon M; Gilbert B; Giroux S; Guay M; Hudon C; Imbeault H; Langlois F; Macoir J; Pigot H; Talbot L; Bier N J Alzheimers Dis; 2019; 68(1):85-96. PubMed ID: 30775978 [TBL] [Abstract][Full Text] [Related]
9. Smart Home-Based Prediction of Multidomain Symptoms Related to Alzheimer's Disease. Alberdi A; Weakley A; Schmitter-Edgecombe M; Cook DJ; Aztiria A; Basarab A; Barrenechea M IEEE J Biomed Health Inform; 2018 Nov; 22(6):1720-1731. PubMed ID: 29994359 [TBL] [Abstract][Full Text] [Related]
10. Automated Smart Home Assessment to Support Pain Management: Multiple Methods Analysis. Fritz RL; Wilson M; Dermody G; Schmitter-Edgecombe M; Cook DJ J Med Internet Res; 2020 Nov; 22(11):e23943. PubMed ID: 33105099 [TBL] [Abstract][Full Text] [Related]
11. Development of a Proxy-Free Objective Assessment Tool of Instrumental Activities of Daily Living in Mild Cognitive Impairment Using Smart Home Technologies. Jekel K; Damian M; Storf H; Hausner L; Frölich L J Alzheimers Dis; 2016; 52(2):509-17. PubMed ID: 27031479 [TBL] [Abstract][Full Text] [Related]
12. Nurse-in-the-loop smart home detection of health events associated with diagnosed chronic conditions: A case-event series. Fritz R; Wuestney K; Dermody G; Cook DJ Int J Nurs Stud Adv; 2022 Dec; 4():100081. PubMed ID: 35642184 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data. Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727 [TBL] [Abstract][Full Text] [Related]
14. A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform. Elbagoury BM; Vladareanu L; Vlădăreanu V; Salem AB; Travediu AM; Roushdy MI Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050561 [TBL] [Abstract][Full Text] [Related]
15. Predicting cognitive scores from wearable-based digital physiological features using machine learning: data from a clinical trial in mild cognitive impairment. Rykov YG; Patterson MD; Gangwar BA; Jabar SB; Leonardo J; Ng KP; Kandiah N BMC Med; 2024 Jan; 22(1):36. PubMed ID: 38273340 [TBL] [Abstract][Full Text] [Related]
16. Blockchain-Modeled Edge-Computing-Based Smart Home Monitoring System with Energy Usage Prediction. Iqbal F; Altaf A; Waris Z; Aray DG; Flores MAL; Díez IT; Ashraf I Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299993 [TBL] [Abstract][Full Text] [Related]
17. A multimodal cross-transformer-based model to predict mild cognitive impairment using speech, language and vision. Poor FF; Dodge HH; Mahoor MH Comput Biol Med; 2024 Nov; 182():109199. PubMed ID: 39332117 [TBL] [Abstract][Full Text] [Related]
18. Differences in Life Space Activity Patterns Between Older Adults With Mild Cognitive Impairment Living Alone or as a Couple: Cohort Study Using Passive Activity Sensing. Muurling M; Au-Yeung WM; Beattie Z; Wu CY; Dodge H; Rodrigues NK; Gothard S; Silbert LC; Barnes LL; Steele JS; Kaye J JMIR Aging; 2023 Oct; 6():e45876. PubMed ID: 37819694 [TBL] [Abstract][Full Text] [Related]
19. Indirectly-Supervised Anomaly Detection of Clinically-Meaningful Health Events from Smart Home Data. Dahmen J; Cook DJ ACM Trans Intell Syst Technol; 2021 Mar; 12(2):1-18. PubMed ID: 34336375 [TBL] [Abstract][Full Text] [Related]
20. Development of a machine learning model to predict mild cognitive impairment using natural language processing in the absence of screening. Penfold RB; Carrell DS; Cronkite DJ; Pabiniak C; Dodd T; Glass AM; Johnson E; Thompson E; Arrighi HM; Stang PE BMC Med Inform Decis Mak; 2022 May; 22(1):129. PubMed ID: 35549702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]