BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36382392)

  • 1. The utility of proteases in proteomics, from sequence profiling to structure and function analysis.
    Sun B; Liu Z; Liu J; Zhao S; Wang L; Wang F
    Proteomics; 2023 Mar; 23(6):e2200132. PubMed ID: 36382392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics beyond trypsin.
    Tsiatsiani L; Heck AJ
    FEBS J; 2015 Jul; 282(14):2612-26. PubMed ID: 25823410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ProAlanase is an Effective Alternative to Trypsin for Proteomics Applications and Disulfide Bond Mapping.
    Samodova D; Hosfield CM; Cramer CN; Giuli MV; Cappellini E; Franciosa G; Rosenblatt MM; Kelstrup CD; Olsen JV
    Mol Cell Proteomics; 2020 Dec; 19(12):2139-2157. PubMed ID: 33020190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Proteases for Mass Spectrometry-Based Post Translational Modification Analyses.
    Tran DT
    Proteomics; 2019 May; 19(10):e1700471. PubMed ID: 30474189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding proteome coverage with orthogonal-specificity α-lytic proteases.
    Meyer JG; Kim S; Maltby DA; Ghassemian M; Bandeira N; Komives EA
    Mol Cell Proteomics; 2014 Mar; 13(3):823-35. PubMed ID: 24425750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From volcanoes to the bench: Advantages of novel hyperthermoacidic archaeal proteases for proteomics workflows.
    McCabe MC; Gejji V; Barnebey A; Siuzdak G; Hoang LT; Pham T; Larson KY; Saviola AJ; Yannone SM; Hansen KC
    J Proteomics; 2023 Oct; 289():104992. PubMed ID: 37634627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of proteases complementary to trypsin to probe isoforms and modifications.
    Trevisiol S; Ayoub D; Lesur A; Ancheva L; Gallien S; Domon B
    Proteomics; 2016 Mar; 16(5):715-28. PubMed ID: 26663565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating Proteomics Using Broad Specificity Proteases.
    Jiang X; Yeung D; Liu Y; Spicer V; Afshari H; Lao Y; Lin F; Krokhin O; Zahedi RP
    J Proteome Res; 2024 Apr; 23(4):1360-1369. PubMed ID: 38457694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended bottom-up proteomics with secreted aspartic protease Sap9.
    Laskay ÜA; Srzentić K; Monod M; Tsybin YO
    J Proteomics; 2014 Oct; 110():20-31. PubMed ID: 25123351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin.
    Giansanti P; Tsiatsiani L; Low TY; Heck AJ
    Nat Protoc; 2016 May; 11(5):993-1006. PubMed ID: 27123950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimicking LysC Proteolysis by 'Arginine Modification-cum-Trypsin Digestion': Comparison of Bottom-up & Middle-down Proteomic Approaches by ESI Q-TOF MS.
    Pandeswari PB; Chary RN; Kamalanathan AS; Prabhakar S; Sabareesh V
    Protein Pept Lett; 2021; 28(12):1379-1390. PubMed ID: 34587878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why less is more when generating tryptic peptides in bottom-up proteomics.
    Hildonen S; Halvorsen TG; Reubsaet L
    Proteomics; 2014 Sep; 14(17-18):2031-41. PubMed ID: 25044798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry for peptide de novo amino acid sequencing for a seven-protein mixture by paired single-residue transposed Lys-N and Lys-C digestion.
    Guan X; Brownstein NC; Young NL; Marshall AG
    Rapid Commun Mass Spectrom; 2017 Jan; 31(2):207-217. PubMed ID: 27813191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR).
    Wu SL; Kim J; Hancock WS; Karger B
    J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lys-C/Arg-C, a More Specific and Efficient Digestion Approach for Proteomics Studies.
    Wu Z; Huang J; Huang J; Li Q; Zhang X
    Anal Chem; 2018 Aug; 90(16):9700-9707. PubMed ID: 30024741
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Choong WK; Chen CT; Wang JH; Sung TY
    J Proteome Res; 2019 Dec; 18(12):4124-4132. PubMed ID: 31429573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ProteaseGuru: A Tool for Protease Selection in Bottom-Up Proteomics.
    Miller RM; Ibrahim K; Smith LM
    J Proteome Res; 2021 Apr; 20(4):1936-1942. PubMed ID: 33661641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting proline in (phospho)proteomics.
    van der Laarse SAM; van Gelder CAGH; Bern M; Akeroyd M; Olsthoorn MMA; Heck AJR
    FEBS J; 2020 Jul; 287(14):2979-2997. PubMed ID: 31863553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precision
    Yang H; Li YC; Zhao MZ; Wu FL; Wang X; Xiao WD; Wang YH; Zhang JL; Wang FQ; Xu F; Zeng WF; Overall CM; He SM; Chi H; Xu P
    Mol Cell Proteomics; 2019 Apr; 18(4):773-785. PubMed ID: 30622160
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.