These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36382943)

  • 21. PARP-dependent and NAT10-independent acetylation of N4-cytidine in RNA appears in UV-damaged chromatin.
    Svobodová Kovaříková A; Stixová L; Kovařík A; Bártová E
    Epigenetics Chromatin; 2023 Jun; 16(1):26. PubMed ID: 37322549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Base excision repair defects invoke hypersensitivity to PARP inhibition.
    Horton JK; Stefanick DF; Prasad R; Gassman NR; Kedar PS; Wilson SH
    Mol Cancer Res; 2014 Aug; 12(8):1128-39. PubMed ID: 24770870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. p21CDKN1A participates in base excision repair by regulating the activity of poly(ADP-ribose) polymerase-1.
    Cazzalini O; Donà F; Savio M; Tillhon M; Maccario C; Perucca P; Stivala LA; Scovassi AI; Prosperi E
    DNA Repair (Amst); 2010 Jun; 9(6):627-35. PubMed ID: 20303835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. XRCC1 counteracts poly(ADP ribose)polymerase (PARP) poisons, olaparib and talazoparib, and a clinical alkylating agent, temozolomide, by promoting the removal of trapped PARP1 from broken DNA.
    Hirota K; Ooka M; Shimizu N; Yamada K; Tsuda M; Ibrahim MA; Yamada S; Sasanuma H; Masutani M; Takeda S
    Genes Cells; 2022 May; 27(5):331-344. PubMed ID: 35194903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair.
    Adamowicz M; Hailstone R; Demin AA; Komulainen E; Hanzlikova H; Brazina J; Gautam A; Wells SE; Caldecott KW
    Nat Cell Biol; 2021 Dec; 23(12):1287-1298. PubMed ID: 34811483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. XRCC1 prevents toxic PARP1 trapping during DNA base excision repair.
    Demin AA; Hirota K; Tsuda M; Adamowicz M; Hailstone R; Brazina J; Gittens W; Kalasova I; Shao Z; Zha S; Sasanuma H; Hanzlikova H; Takeda S; Caldecott KW
    Mol Cell; 2021 Jul; 81(14):3018-3030.e5. PubMed ID: 34102106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human MettL3-MettL14 RNA adenine methyltransferase complex is active on double-stranded DNA containing lesions.
    Yu D; Horton JR; Yang J; Hajian T; Vedadi M; Sagum CA; Bedford MT; Blumenthal RM; Zhang X; Cheng X
    Nucleic Acids Res; 2021 Nov; 49(20):11629-11642. PubMed ID: 34086966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Emerging Role of RNA Modifications in DNA Double-Strand Break Repair.
    Jimeno S; Balestra FR; Huertas P
    Front Mol Biosci; 2021; 8():664872. PubMed ID: 33996910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Treatment of Multiple Myeloma and the Role of Melphalan in the Era of Modern Therapies-Current Research and Clinical Approaches.
    Poczta A; Rogalska A; Marczak A
    J Clin Med; 2021 Apr; 10(9):. PubMed ID: 33922721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia.
    Yankova E; Blackaby W; Albertella M; Rak J; De Braekeleer E; Tsagkogeorga G; Pilka ES; Aspris D; Leggate D; Hendrick AG; Webster NA; Andrews B; Fosbeary R; Guest P; Irigoyen N; Eleftheriou M; Gozdecka M; Dias JML; Bannister AJ; Vick B; Jeremias I; Vassiliou GS; Rausch O; Tzelepis K; Kouzarides T
    Nature; 2021 May; 593(7860):597-601. PubMed ID: 33902106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. N
    Qu F; Tsegay PS; Liu Y
    Front Mol Biosci; 2021; 8():645823. PubMed ID: 33898522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Untangling the crosstalk between BRCA1 and R-loops during DNA repair.
    San Martin Alonso M; Noordermeer SM
    Nucleic Acids Res; 2021 May; 49(9):4848-4863. PubMed ID: 33755171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. G-Quadruplex Structures Colocalize with Transcription Factories and Nuclear Speckles Surrounded by Acetylated and Dimethylated Histones H3.
    Komůrková D; Svobodová Kovaříková A; Bártová E
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context.
    Kutuzov MM; Belousova EA; Kurgina TA; Ukraintsev AA; Vasil'eva IA; Khodyreva SN; Lavrik OI
    Sci Rep; 2021 Mar; 11(1):4849. PubMed ID: 33649352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Equilibrium between nascent and parental MCM proteins protects replicating genomes.
    Sedlackova H; Rask MB; Gupta R; Choudhary C; Somyajit K; Lukas J
    Nature; 2020 Nov; 587(7833):297-302. PubMed ID: 33087936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA in DNA repair.
    Vågbø CB; Slupphaug G
    DNA Repair (Amst); 2020 Nov; 95():102927. PubMed ID: 32920299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. METTL3 and N6-Methyladenosine Promote Homologous Recombination-Mediated Repair of DSBs by Modulating DNA-RNA Hybrid Accumulation.
    Zhang C; Chen L; Peng D; Jiang A; He Y; Zeng Y; Xie C; Zhou H; Luo X; Liu H; Chen L; Ren J; Wang W; Zhao Y
    Mol Cell; 2020 Aug; 79(3):425-442.e7. PubMed ID: 32615088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA at DNA Double-Strand Breaks: The Challenge of Dealing with DNA:RNA Hybrids.
    Domingo-Prim J; Bonath F; Visa N
    Bioessays; 2020 May; 42(5):e1900225. PubMed ID: 32105369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. N
    Svobodová Kovaříková A; Stixová L; Kovařík A; Komůrková D; Legartová S; Fagherazzi P; Bártová E
    Cells; 2020 Feb; 9(2):. PubMed ID: 32033081
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.