These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36383)

  • 41. The pH dependence of the thermodynamics of the interaction of diazepam with human serum albumin.
    Janssen LH; Dröge JH; Durlinger FC; Fruytier FJ
    J Biol Chem; 1985 Sep; 260(21):11442-5. PubMed ID: 4044563
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Human serum albumin conformational changes as induced by tenoxicam and modified by simultaneous diazepam binding.
    Brée F; Urien S; Nguyen P; Tillement JP; Steiner A; Vallat-Molliet C; Testa B; Visy J; Simonyi M
    J Pharm Pharmacol; 1993 Dec; 45(12):1050-3. PubMed ID: 7908973
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein binding of methohexital. Study of parameters and modulating factors using the equilibrium dialysis technique.
    Girard I; Ferry S
    J Pharm Biomed Anal; 1996 Mar; 14(5):583-91. PubMed ID: 8738188
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Binding of the Triton X series of nonionic surfactants to bovine serum albumin.
    Sukow WW; Sandberg HE; Lewis EA; Eatough DJ; Hansen LD
    Biochemistry; 1980 Mar; 19(5):912-7. PubMed ID: 7188858
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The binding of chloride ions to ligated and unligated human hemoglobin and its influence on the Bohr effect.
    van Beek GG; Zuiderweg ER; de Bruin SH
    Eur J Biochem; 1979 Sep; 99(2):379-83. PubMed ID: 40792
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of N-B transition of human serum albumin on the specific drug-binding sites.
    Wanwimolruk S; Birkett DJ
    Biochim Biophys Acta; 1982 Dec; 709(2):247-55. PubMed ID: 6185151
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deciphering the mechanistic insight into the stoichiometric ratio dependent behavior of Cu(II) on BSA fibrillation.
    Singh A; Datta P; Pandey LM
    Int J Biol Macromol; 2017 Apr; 97():662-670. PubMed ID: 28108412
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermodynamic and spectroscopic study of Cu(II) and Ni(II) binding to bovine serum albumin.
    Zhang Y; Wilcox DE
    J Biol Inorg Chem; 2002 Mar; 7(3):327-37. PubMed ID: 11935357
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of glucose oxidase with ionic surfactants: a microcalorimetric study.
    Housaindokht MR; Moosavi-Movahedi AA; Moghadasi J; Jones MN
    Int J Biol Macromol; 1993 Dec; 15(6):337-41. PubMed ID: 8110654
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anion binding properties of human serum albumin from halide ion quadrupole relaxation.
    Norne JE; Hjalmarsson SG; Lindman B; Zeppezauer M
    Biochemistry; 1975 Jul; 14(15):3401-8. PubMed ID: 1148208
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Drug-binding and other physicochemical properties of a large tryptic and a large peptic fragment of human serum albumin.
    Bos OJ; Fischer MJ; Wilting J; Janssen LH
    Biochim Biophys Acta; 1988 Mar; 953(1):37-47. PubMed ID: 3124878
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor.
    Woodward CK; Hilton BD
    Biophys J; 1980 Oct; 32(1):561-75. PubMed ID: 7248461
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The characterization of ion regulation in Amazonian mosquito larvae: evidence of phenotypic plasticity, population-based disparity, and novel mechanisms of ion uptake.
    Patrick ML; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL
    Physiol Biochem Zool; 2002; 75(3):223-36. PubMed ID: 12177826
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Binding of sodium aurothiomalate to human serum albumin in vitro at physiological conditions.
    Pedersen SM
    Ann Rheum Dis; 1986 Sep; 45(9):712-7. PubMed ID: 3094464
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling.
    Gelamo EL; Silva CH; Imasato H; Tabak M
    Biochim Biophys Acta; 2002 Jan; 1594(1):84-99. PubMed ID: 11825611
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Human serum albumin as an allosteric two-state protein. Evidence from effects of calcium and warfarin on proton binding behaviour.
    Janssen LH; Van Wilgenburg MT; Wilting J
    Biochim Biophys Acta; 1981 Jul; 669(2):244-50. PubMed ID: 7284438
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Circular dichroic investigations into binding of sulfonamides to serum albumin.
    Otagiri M; Nakamura H; Imamura Y; Matsumoto U
    Pharm Weekbl Sci; 1989 Dec; 11(6):207-12. PubMed ID: 2616252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Binding of the organophosphates parathion and paraoxon to bovine and human serum albumin.
    Mourik J; de Jong LP
    Arch Toxicol; 1978 Oct; 41(1):43-8. PubMed ID: 568924
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antitumor drug-protein interactions. Binding of 1-beta-D-arabinofuranosyl cytosine to albumin and chemically modified albumin.
    Szekerke M; Horváth M; Hudecz F
    Arzneimittelforschung; 1979; 29(1):19-21. PubMed ID: 36105
    [TBL] [Abstract][Full Text] [Related]  

  • 60. AMP interaction sites in glycogen phosphorylase b. A thermodynamic analysis.
    Menendez M; Solis D; Usobiaga P; Laynez J
    Biophys Chem; 1985 Mar; 21(3-4):249-60. PubMed ID: 2985138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.