These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36383652)

  • 1. CTR9 drives osteochondral lineage differentiation of human mesenchymal stem cells via epigenetic regulation of BMP-2 signaling.
    Chan NT; Lee MS; Wang Y; Galipeau J; Li WJ; Xu W
    Sci Adv; 2022 Nov; 8(46):eadc9222. PubMed ID: 36383652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic Library Screen Identifies Abexinostat as Novel Regulator of Adipocytic and Osteoblastic Differentiation of Human Skeletal (Mesenchymal) Stem Cells.
    Ali D; Hamam R; Alfayez M; Kassem M; Aldahmash A; Alajez NM
    Stem Cells Transl Med; 2016 Aug; 5(8):1036-47. PubMed ID: 27194745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification.
    Hemming S; Cakouros D; Isenmann S; Cooper L; Menicanin D; Zannettino A; Gronthos S
    Stem Cells; 2014 Mar; 32(3):802-15. PubMed ID: 24123378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2.
    Dudakovic A; Camilleri ET; Xu F; Riester SM; McGee-Lawrence ME; Bradley EW; Paradise CR; Lewallen EA; Thaler R; Deyle DR; Larson AN; Lewallen DG; Dietz AB; Stein GS; Montecino MA; Westendorf JJ; van Wijnen AJ
    J Biol Chem; 2015 Nov; 290(46):27604-17. PubMed ID: 26424790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Novel EZH2 Targets Regulating Osteogenic Differentiation in Mesenchymal Stem Cells.
    Hemming S; Cakouros D; Vandyke K; Davis MJ; Zannettino AC; Gronthos S
    Stem Cells Dev; 2016 Jun; 25(12):909-21. PubMed ID: 27168161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. miR-765 inhibits the osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting BMP6 via regulating the BMP6/Smad1/5/9 signaling pathway.
    Wang T; Zhang C; Wu C; Liu J; Yu H; Zhou X; Zhang J; Wang X; He S; Xu X; Ma B; Che X; Li W
    Stem Cell Res Ther; 2020 Feb; 11(1):62. PubMed ID: 32059748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic Stimulation of Human Adipose-Derived Mesenchymal Stem Cells Using a Fungal Metabolite That Suppresses the Polycomb Group Protein EZH2.
    Samsonraj RM; Dudakovic A; Manzar B; Sen B; Dietz AB; Cool SM; Rubin J; van Wijnen AJ
    Stem Cells Transl Med; 2018 Feb; 7(2):197-209. PubMed ID: 29280310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FGFR2 accommodates osteogenic cell fate determination in human mesenchymal stem cells.
    Zhang Y; Ling L; Ajay D/O Ajayakumar A; Eio YM; van Wijnen AJ; Nurcombe V; Cool SM
    Gene; 2022 Apr; 818():146199. PubMed ID: 35093449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic Signatures at the RUNX2-P1 and Sp7 Gene Promoters Control Osteogenic Lineage Commitment of Umbilical Cord-Derived Mesenchymal Stem Cells.
    Sepulveda H; Aguilar R; Prieto CP; Bustos F; Aedo S; Lattus J; van Zundert B; Palma V; Montecino M
    J Cell Physiol; 2017 Sep; 232(9):2519-2527. PubMed ID: 27689934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct transcriptional repression of Zfp423 by Zfp521 mediates a bone morphogenic protein-dependent osteoblast versus adipocyte lineage commitment switch.
    Addison WN; Fu MM; Yang HX; Lin Z; Nagano K; Gori F; Baron R
    Mol Cell Biol; 2014 Aug; 34(16):3076-85. PubMed ID: 24891617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage.
    Satija NK; Sharma D; Afrin F; Tripathi RP; Gangenahalli G
    PLoS One; 2013; 8(1):e55769. PubMed ID: 23383279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of BMP-2-induced chondrogenic versus osteogenic differentiation of human mesenchymal stem cells by cell-specific extracellular matrices.
    Kwon SH; Lee TJ; Park J; Hwang JE; Jin M; Jang HK; Hwang NS; Kim BS
    Tissue Eng Part A; 2013 Jan; 19(1-2):49-58. PubMed ID: 23088504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wnt and BMP signaling pathways co-operatively induce the differentiation of multiple myeloma mesenchymal stem cells into osteoblasts by upregulating EMX2.
    Wei XF; Chen QL; Fu Y; Zhang QK
    J Cell Biochem; 2019 Apr; 120(4):6515-6527. PubMed ID: 30450775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smad4 and γ-secretase knock-down effect on osteogenic differentiation mediated via Runx2 in canine mesenchymal stem cells.
    Shabir U; Bhat IA; Pir BA; Bharti MK; Pandey S; Gutulla SK; Sarkar M; Thirupathi Y; Chandra V; Sonewane A; Gutulla TS
    Res Vet Sci; 2022 Jul; 145():116-124. PubMed ID: 35183849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cultured Human Periosteum-Derived Cells Can Differentiate into Osteoblasts in a Perioxisome Proliferator-Activated Receptor Gamma-Mediated Fashion via Bone Morphogenetic Protein signaling.
    Chung JE; Park JH; Yun JW; Kang YH; Park BW; Hwang SC; Cho YC; Sung IY; Woo DK; Byun JH
    Int J Med Sci; 2016; 13(11):806-818. PubMed ID: 27877072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells.
    Meyer MB; Benkusky NA; Sen B; Rubin J; Pike JW
    J Biol Chem; 2016 Aug; 291(34):17829-47. PubMed ID: 27402842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syndecan-1 Facilitates the Human Mesenchymal Stem Cell Osteo-Adipogenic Balance.
    Yu C; Peall IW; Pham SH; Okolicsanyi RK; Griffiths LR; Haupt LM
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32485953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lineage-selective super enhancers mediate core regulatory circuitry during adipogenic and osteogenic differentiation of human mesenchymal stem cells.
    Wang C; Tian W; Hu SY; Di CX; He CY; Cao QL; Hao RH; Dong SS; Liu CC; Rong Y; Kang HF; Yang TL; Yang Z; Guo Y
    Cell Death Dis; 2022 Oct; 13(10):866. PubMed ID: 36224171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcriptional elongation factor CTR9 demarcates PRC2-mediated H3K27me3 domains by altering PRC2 subtype equilibrium.
    Chan NT; Huang J; Ma G; Zeng H; Donahue K; Wang Y; Li L; Xu W
    Nucleic Acids Res; 2022 Feb; 50(4):1969-1992. PubMed ID: 35137163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ctr9, a key subunit of PAFc, affects global estrogen signaling and drives ERα-positive breast tumorigenesis.
    Zeng H; Xu W
    Genes Dev; 2015 Oct; 29(20):2153-67. PubMed ID: 26494790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.