BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36383697)

  • 1. Microenvironmental Analysis and Control for Local Cells under Confluent Conditions via a Capillary-Based Microfluidic Device.
    Ota N; Tanaka N; Sato A; Shen Y; Yalikun Y; Tanaka Y
    Anal Chem; 2022 Nov; 94(47):16299-16307. PubMed ID: 36383697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartmentalized microfluidic device for in vitro co-culture of retinal cells.
    Jahagirdar D; Yadav S; Gore M; Korpale V; Mathpati CS; Chidambaram S; Majumder A; Jain R; Dandekar P
    Biotechnol J; 2022 Sep; 17(9):e2100530. PubMed ID: 35652558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a novel microfluidic device for the manipulation of skeletal muscle microvascular blood flow in vivo.
    Russell McEvoy GM; Shogan H; Sové RJ; Fraser GM
    Microcirculation; 2021 Jul; 28(5):e12698. PubMed ID: 33817909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circulating human peripheral blood granulocytes synthesize and secrete tumor necrosis factor alpha.
    Dubravec DB; Spriggs DR; Mannick JA; Rodrick ML
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6758-61. PubMed ID: 1697688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic membrane device to mimic critical components of the vascular microenvironment.
    Srigunapalan S; Lam C; Wheeler AR; Simmons CA
    Biomicrofluidics; 2011 Mar; 5(1):13409. PubMed ID: 21522499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions.
    Humayun M; Chow CW; Young EWK
    Lab Chip; 2018 May; 18(9):1298-1309. PubMed ID: 29651473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle-on-a-chip with an on-site multiplexed biosensing system for in situ monitoring of secreted IL-6 and TNF-α.
    Ortega MA; Fernández-Garibay X; Castaño AG; De Chiara F; Hernández-Albors A; Balaguer-Trias J; Ramón-Azcón J
    Lab Chip; 2019 Aug; 19(15):2568-2580. PubMed ID: 31243422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorimetric sandwich-type immunosensor for quantification of TNF-α.
    Bari SMI; Reis LG; Nestorova GG
    Biosens Bioelectron; 2019 Feb; 126():82-87. PubMed ID: 30396021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial Chemical Stimulation Control in Microenvironment by Microfluidic Probe Integrated Device for Cell-Based Assay.
    Horayama M; Shinha K; Kabayama K; Fujii T; Kimura H
    PLoS One; 2016; 11(12):e0168158. PubMed ID: 27930750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TNF-α mediated increase of HIF-1α inhibits VASP expression, which reduces alveolar-capillary barrier function during acute lung injury (ALI).
    Tang M; Tian Y; Li D; Lv J; Li Q; Kuang C; Hu P; Wang Y; Wang J; Su K; Wei L
    PLoS One; 2014; 9(7):e102967. PubMed ID: 25051011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of Benzopyrene-Induced Lung Inflammatory and Cytotoxic Injury in a Chemical Gradient-Integrated Microfluidic Bronchial Epithelium System.
    Zhang F; Tian C; Liu W; Wang K; Wei Y; Wang H; Wang J; Liu S
    ACS Sens; 2018 Dec; 3(12):2716-2725. PubMed ID: 30507116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Microfluidic Device for Modulation of Organellar Heterogeneity in Live Single Cells.
    Wada KI; Hosokawa K; Ito Y; Maeda M
    Anal Sci; 2021 Mar; 37(3):499-503. PubMed ID: 33281140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating Nonalcoholic Fatty Liver Disease in a Liver-on-a-Chip Microfluidic Device.
    Gori M; Simonelli MC; Giannitelli SM; Businaro L; Trombetta M; Rainer A
    PLoS One; 2016; 11(7):e0159729. PubMed ID: 27438262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs).
    DeStefano JG; Xu ZS; Williams AJ; Yimam N; Searson PC
    Fluids Barriers CNS; 2017 Aug; 14(1):20. PubMed ID: 28774343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering an artificial alveolar-capillary membrane: a novel continuously perfused model within microchannels.
    Nalayanda DD; Wang Q; Fulton WB; Wang TH; Abdullah F
    J Pediatr Surg; 2010 Jan; 45(1):45-51. PubMed ID: 20105578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping.
    Huang NT; Chen W; Oh BR; Cornell TT; Shanley TP; Fu J; Kurabayashi K
    Lab Chip; 2012 Oct; 12(20):4093-101. PubMed ID: 22892681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions.
    Barmaki S; Jokinen V; Obermaier D; Blokhina D; Korhonen M; Ras RHA; Vuola J; Franssila S; Kankuri E
    Acta Biomater; 2018 Jun; 73():167-179. PubMed ID: 29649636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microenvironment induced spheroid to sheeting transition of immortalized human keratinocytes (HaCaT) cultured in microbubbles formed in polydimethylsiloxane.
    Chandrasekaran S; Giang UB; King MR; DeLouise LA
    Biomaterials; 2011 Oct; 32(29):7159-68. PubMed ID: 21724250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insert-based microfluidics for 3D cell culture with analysis.
    Chen C; Townsend AD; Hayter EA; Birk HM; Sell SA; Martin RS
    Anal Bioanal Chem; 2018 May; 410(12):3025-3035. PubMed ID: 29536154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction study of cancer cells and fibroblasts on a spatially confined oxygen gradient microfluidic chip to investigate the tumor microenvironment.
    Sun W; Chen Y; Wang Y; Luo P; Zhang M; Zhang H; Hu P
    Analyst; 2018 Nov; 143(22):5431-5437. PubMed ID: 30311621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.