BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36383697)

  • 21. Embryonic body culturing in an all-glass microfluidic device with laser-processed 4 μm thick ultra-thin glass sheet filter.
    Yalikun Y; Tanaka N; Hosokawa Y; Iino T; Tanaka Y
    Biomed Microdevices; 2017 Sep; 19(4):85. PubMed ID: 28929304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liver injury-on-a-chip: microfluidic co-cultures with integrated biosensors for monitoring liver cell signaling during injury.
    Zhou Q; Patel D; Kwa T; Haque A; Matharu Z; Stybayeva G; Gao Y; Diehl AM; Revzin A
    Lab Chip; 2015 Dec; 15(23):4467-78. PubMed ID: 26480303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exposure to TNF-alpha but not IL-1beta impairs insulin-dependent phosphorylation of protein kinase B and p70S6k in mouse C2C12 myogenic cells.
    Grzelkowska-Kowalczyk K; Wieteska-Skrzeczyńska W
    Pol J Vet Sci; 2006; 9(1):1-10. PubMed ID: 16573269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction.
    Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X
    Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel Microfluidic Platform for Biomechano-Stimulations on a Chip.
    Prevedello L; Michielin F; Balcon M; Savio E; Pavan P; Elvassore N
    Ann Biomed Eng; 2019 Jan; 47(1):231-242. PubMed ID: 30218223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Liver sinusoid on a chip.
    Du Y; Li N; Long M
    Methods Cell Biol; 2018; 146():105-134. PubMed ID: 30037457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models.
    Virumbrales-Muñoz M; Ayuso JM; Olave M; Monge R; de Miguel D; Martínez-Lostao L; Le Gac S; Doblare M; Ochoa I; Fernandez LJ
    Sci Rep; 2017 Sep; 7(1):11998. PubMed ID: 28931839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Directing the spatial patterning of motor neuron differentiation in engineered microenvironments.
    Demers CJ; Cox G; Collins SD; Smith RL
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():477-480. PubMed ID: 28268375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D printed Lego
    Nie J; Gao Q; Qiu JJ; Sun M; Liu A; Shao L; Fu JZ; Zhao P; He Y
    Biofabrication; 2018 Mar; 10(3):035001. PubMed ID: 29417931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-stimulation with IL-1β and TNF-α induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system.
    Hyvärinen T; Hagman S; Ristola M; Sukki L; Veijula K; Kreutzer J; Kallio P; Narkilahti S
    Sci Rep; 2019 Nov; 9(1):16944. PubMed ID: 31729450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Microfluidic Probe Integrated Device for Spatiotemporal 3D Chemical Stimulation in Cells.
    Shinha K; Nihei W; Kimura H
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32708814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic vascular-bed devices for vascularized 3D tissue engineering: tissue engineering on a chip.
    Takehara H; Sakaguchi K; Sekine H; Okano T; Shimizu T
    Biomed Microdevices; 2019 Dec; 22(1):9. PubMed ID: 31863202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced continuous-flow microfluidic device for parallel screening of crystal polymorphs, morphology, and kinetics at controlled supersaturation.
    Coliaie P; Kelkar MS; Langston M; Liu C; Nazemifard N; Patience D; Skliar D; Nere NK; Singh MR
    Lab Chip; 2021 Jun; 21(12):2333-2342. PubMed ID: 34096561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of stable capillary networks using a microfluidic device.
    Sudo R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():350-3. PubMed ID: 26736271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pump-Free Glass-Based Capillary Microfluidic Immuno-Assay Chip for Electrochemical Detection of Prostate-Specific Antigen.
    Lee MJ; Yeom J; Choi JH; Shin JH; Kim TH; Jeon JW; Na JG; Shin K; Oh BK
    J Nanosci Nanotechnol; 2020 Aug; 20(8):4629-4633. PubMed ID: 32126630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device.
    Lee SW; Hong S; Jung B; Jeong SY; Byeon JH; Jeong GS; Choi J; Hwang C
    Biotechnol Bioeng; 2019 Nov; 116(11):3041-3052. PubMed ID: 31294818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic device engineered to study the trafficking of multiple myeloma cancer cells through the sinusoidal niche of bone marrow.
    Sui C; Zilberberg J; Lee W
    Sci Rep; 2022 Jan; 12(1):1439. PubMed ID: 35087109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A microfluidic design to provide a stable and uniform in vitro microenvironment for cell culture inspired by the redundancy characteristic of leaf areoles.
    Li J; Wei J; Liu Y; Liu B; Liu T; Jiang Y; Ding L; Liu C
    Lab Chip; 2017 Nov; 17(22):3921-3933. PubMed ID: 29063079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.