These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36384119)

  • 1. Developmental spontaneous activity promotes formation of sensory domains, frequency tuning and proper gain in central auditory circuits.
    Kersbergen CJ; Babola TA; Rock J; Bergles DE
    Cell Rep; 2022 Nov; 41(7):111649. PubMed ID: 36384119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purinergic Signaling Controls Spontaneous Activity in the Auditory System throughout Early Development.
    Babola TA; Li S; Wang Z; Kersbergen CJ; Elgoyhen AB; Coate TM; Bergles DE
    J Neurosci; 2021 Jan; 41(4):594-612. PubMed ID: 33303678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space.
    Babola TA; Kersbergen CJ; Wang HC; Bergles DE
    Elife; 2020 Jan; 9():. PubMed ID: 31913121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Priming central sound processing circuits through induction of spontaneous activity in the cochlea before hearing onset.
    Kersbergen CJ; Bergles DE
    Trends Neurosci; 2024 Jul; 47(7):522-537. PubMed ID: 38782701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preservation of developmental spontaneous activity enables early auditory system maturation in deaf mice.
    Kersbergen CJ; Babola TA; Kanold PO; Bergles DE
    PLoS Biol; 2023 Jun; 21(6):e3002160. PubMed ID: 37368868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity of response properties of inferior colliculus neurons following acute cochlear damage.
    Wang J; Salvi RJ; Powers N
    J Neurophysiol; 1996 Jan; 75(1):171-83. PubMed ID: 8822550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperexcitability of inferior colliculus and acoustic startle reflex with age-related hearing loss.
    Xiong B; Alkharabsheh A; Manohar S; Chen GD; Yu N; Zhao X; Salvi R; Sun W
    Hear Res; 2017 Jul; 350():32-42. PubMed ID: 28431308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural integration and enhancement from the inferior colliculus up to different layers of auditory cortex.
    Straka MM; Schendel D; Lim HH
    J Neurophysiol; 2013 Aug; 110(4):1009-20. PubMed ID: 23719210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between auditory thresholds, central spontaneous activity, and hair cell loss after acoustic trauma.
    Mulders WH; Ding D; Salvi R; Robertson D
    J Comp Neurol; 2011 Sep; 519(13):2637-47. PubMed ID: 21491427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory plasticity and hyperactivity following cochlear damage.
    Salvi RJ; Wang J; Ding D
    Hear Res; 2000 Sep; 147(1-2):261-74. PubMed ID: 10962190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain.
    Salvi R; Sun W; Ding D; Chen GD; Lobarinas E; Wang J; Radziwon K; Auerbach BD
    Front Neurosci; 2016; 10():621. PubMed ID: 28149271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity.
    Mulders WH; Robertson D
    Neuroscience; 2009 Dec; 164(2):733-46. PubMed ID: 19699277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory central gain compensates for changes in cochlear output after prolonged low-level noise exposure.
    Sheppard A; Liu X; Ding D; Salvi R
    Neurosci Lett; 2018 Nov; 687():183-188. PubMed ID: 30273699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional consequences of neonatal unilateral cochlear removal.
    Moore DR; King AJ; McAlpine D; Martin RL; Hutchings ME
    Prog Brain Res; 1993; 97():127-33. PubMed ID: 8234738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BDNF in Lower Brain Parts Modifies Auditory Fiber Activity to Gain Fidelity but Increases the Risk for Generation of Central Noise After Injury.
    Chumak T; Rüttiger L; Lee SC; Campanelli D; Zuccotti A; Singer W; Popelář J; Gutsche K; Geisler HS; Schraven SP; Jaumann M; Panford-Walsh R; Hu J; Schimmang T; Zimmermann U; Syka J; Knipper M
    Mol Neurobiol; 2016 Oct; 53(8):5607-27. PubMed ID: 26476841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing diversity of neural responses to speech sounds across the central auditory pathway.
    Ranasinghe KG; Vrana WA; Matney CJ; Kilgard MP
    Neuroscience; 2013 Nov; 252():80-97. PubMed ID: 23954862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tonotopic and localized pathways from primary auditory cortex to the central nucleus of the inferior colliculus.
    Markovitz CD; Tang TT; Lim HH
    Front Neural Circuits; 2013; 7():77. PubMed ID: 23641201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coactivation of different neurons within an isofrequency lamina of the inferior colliculus elicits enhanced auditory cortical activation.
    Calixto R; Lenarz M; Neuheiser A; Scheper V; Lenarz T; Lim HH
    J Neurophysiol; 2012 Aug; 108(4):1199-210. PubMed ID: 22623485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of neurons in the rat's dorsal cortex of the inferior colliculus to monaural tone bursts.
    Lumani A; Zhang H
    Brain Res; 2010 Sep; 1351():115-129. PubMed ID: 20615398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.