These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
415 related articles for article (PubMed ID: 36384282)
1. Atomic-Scale Evidence of Catalyst Evolution for the Structure-Controlled Growth of Single-Walled Carbon Nanotubes. Zhao X; Sun S; Yang F; Li Y Acc Chem Res; 2022 Dec; 55(23):3334-3344. PubMed ID: 36384282 [TBL] [Abstract][Full Text] [Related]
2. Growth modes of single-walled carbon nanotubes on catalysts. Yang F; Zhao H; Li R; Liu Q; Zhang X; Bai X; Wang R; Li Y Sci Adv; 2022 Oct; 8(41):eabq0794. PubMed ID: 36240273 [TBL] [Abstract][Full Text] [Related]
3. Atomic-scale structural identification and evolution of Co-W-C ternary SWCNT catalytic nanoparticles: High-resolution STEM imaging on SiO An H; Kumamoto A; Xiang R; Inoue T; Otsuka K; Chiashi S; Bichara C; Loiseau A; Li Y; Ikuhara Y; Maruyama S Sci Adv; 2019 May; 5(5):eaat9459. PubMed ID: 31236457 [TBL] [Abstract][Full Text] [Related]
4. Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles. Lin PA; Gomez-Ballesteros JL; Burgos JC; Balbuena PB; Natarajan B; Sharma R J Catal; 2017 May; 349():149-155. PubMed ID: 28740274 [TBL] [Abstract][Full Text] [Related]
5. Growth kinetics of single-walled carbon nanotubes with a (2 He M; Wang X; Zhang S; Jiang H; Cavalca F; Cui H; Wagner JB; Hansen TW; Kauppinen E; Zhang J; Ding F Sci Adv; 2019 Dec; 5(12):eaav9668. PubMed ID: 31853492 [TBL] [Abstract][Full Text] [Related]
6. Atomic Scale Stability of Tungsten-Cobalt Intermetallic Nanocrystals in Reactive Environment at High Temperature. Yang F; Zhao H; Wang X; Liu X; Liu Q; Liu X; Jin C; Wang R; Li Y J Am Chem Soc; 2019 Apr; 141(14):5871-5879. PubMed ID: 30875209 [TBL] [Abstract][Full Text] [Related]
7. Nucleation of Single-Wall Carbon Nanotubes from Faceted Pt Catalyst Particles Revealed by Ma R; Qiu L; Zhang L; Tang DM; Wang Y; Zhang B; Ding F; Liu C; Cheng HM ACS Nano; 2022 Oct; 16(10):16574-16583. PubMed ID: 36228117 [TBL] [Abstract][Full Text] [Related]
8. Growth Termination and Multiple Nucleation of Single-Wall Carbon Nanotubes Evidenced by in Situ Transmission Electron Microscopy. Zhang L; He M; Hansen TW; Kling J; Jiang H; Kauppinen EI; Loiseau A; Wagner JB ACS Nano; 2017 May; 11(5):4483-4493. PubMed ID: 28402623 [TBL] [Abstract][Full Text] [Related]
9. Can single-walled carbon nanotube diameter be defined by catalyst particle diameter? Diaz MC; Jiang H; Kauppinen E; Sharma R; Balbuena PB J Phys Chem C Nanomater Interfaces; 2019; 123(50):. PubMed ID: 33029278 [TBL] [Abstract][Full Text] [Related]
10. Zeolite Nanosheets Stabilize Catalyst Particles to Promote the Growth of Thermodynamically Unfavorable, Small-Diameter Carbon Nanotubes. Carpena-Núñez J; Rao R; Kim D; Bets KV; Zakharov DN; Boscoboinik JA; Stach EA; Yakobson BI; Tsapatsis M; Stacchiola D; Maruyama B Small; 2020 Sep; 16(38):e2002120. PubMed ID: 32812375 [TBL] [Abstract][Full Text] [Related]
11. The kinetics of chirality assignment in catalytic single-walled carbon nanotube growth and the routes towards selective growth. Xu Z; Qiu L; Ding F Chem Sci; 2018 Mar; 9(11):3056-3061. PubMed ID: 29732090 [TBL] [Abstract][Full Text] [Related]
12. How a Solid Catalyst Determines the Chirality of the Single-Wall Carbon Nanotube Grown on It. Wang X; Ding F J Phys Chem Lett; 2019 Feb; 10(4):735-741. PubMed ID: 30702891 [TBL] [Abstract][Full Text] [Related]
13. Templated Synthesis of Single-Walled Carbon Nanotubes with Specific Structure. Yang F; Wang X; Li M; Liu X; Zhao X; Zhang D; Zhang Y; Yang J; Li Y Acc Chem Res; 2016 Apr; 49(4):606-15. PubMed ID: 26999451 [TBL] [Abstract][Full Text] [Related]
14. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes. Liu B; Wu F; Gui H; Zheng M; Zhou C ACS Nano; 2017 Jan; 11(1):31-53. PubMed ID: 28072518 [TBL] [Abstract][Full Text] [Related]
15. Chirality Distributions for Semiconducting Single-Walled Carbon Nanotubes Determined by Photoluminescence Spectroscopy. Irita M; Yamamoto T; Homma Y Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578625 [TBL] [Abstract][Full Text] [Related]
16. "Smart poisoning" of Co/SiO Yuan Y; Karahan HE; Yıldırım C; Wei L; Birer Ö; Zhai S; Lau R; Chen Y Nanoscale; 2016 Oct; 8(40):17705-17713. PubMed ID: 27722714 [TBL] [Abstract][Full Text] [Related]
17. VQS (Vapor-Quasiliquid-Solid, Vapor-Quasisolid-Solid) Mechanism for Realizing Narrow Distributions of Chirality and Diameters of Single-Walled Carbon Nanotubes (SWCNTs). Mohammad SN J Nanosci Nanotechnol; 2019 Sep; 19(9):5388-5417. PubMed ID: 30961690 [TBL] [Abstract][Full Text] [Related]
18. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements. Gao W; Hood ZD; Chi M Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, Sorting, and Applications of Single-Chirality Single-Walled Carbon Nanotubes. Kharlamova MV; Burdanova MG; Paukov MI; Kramberger C Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079282 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of local chirality during SWCNT growth: armchair versus zigzag nanotubes. Kim J; Page AJ; Irle S; Morokuma K J Am Chem Soc; 2012 Jun; 134(22):9311-9. PubMed ID: 22571240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]