These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 36384464)

  • 1. MLM-based typographical error correction of unstructured medical texts for named entity recognition.
    Lee EB; Heo GE; Choi CM; Song M
    BMC Bioinformatics; 2022 Nov; 23(1):486. PubMed ID: 36384464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records.
    Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes.
    Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ
    J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating Medical Entity Recognition in Health Care: Entity Model Quantitative Study.
    Liu S; Wang A; Xiu X; Zhong M; Wu S
    JMIR Med Inform; 2024 Oct; 12():e59782. PubMed ID: 39419501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Med7: A transferable clinical natural language processing model for electronic health records.
    Kormilitzin A; Vaci N; Liu Q; Nevado-Holgado A
    Artif Intell Med; 2021 Aug; 118():102086. PubMed ID: 34412834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multitask bi-directional RNN model for named entity recognition on Chinese electronic medical records.
    Chowdhury S; Dong X; Qian L; Li X; Guan Y; Yang J; Yu Q
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):499. PubMed ID: 30591015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records.
    Cai X; Dong S; Hu J
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information Extraction from Medical Texts with BERT Using Human-in-the-Loop Labeling.
    Šuvalov H; Laur S; Kolde R
    Stud Health Technol Inform; 2023 May; 302():831-832. PubMed ID: 37203510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of pre-trained language models for named entity recognition in clinical trial eligibility criteria from multiple corpora.
    Li J; Wei Q; Ghiasvand O; Chen M; Lobanov V; Weng C; Xu H
    BMC Med Inform Decis Mak; 2022 Sep; 22(Suppl 3):235. PubMed ID: 36068551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Named entity recognition of Chinese electronic medical records based on a hybrid neural network and medical MC-BERT.
    Chen P; Zhang M; Yu X; Li S
    BMC Med Inform Decis Mak; 2022 Dec; 22(1):315. PubMed ID: 36457119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A customized method for information extraction from unstructured text data in the electronic medical records].
    Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Language inference-based learning for Low-Resource Chinese clinical named entity recognition using language model.
    Cui Z; Yu K; Yuan Z; Dong X; Luo W
    J Biomed Inform; 2024 Jan; 149():104559. PubMed ID: 38056702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using Natural Language Processing Methods: Feasibility Study With Real-world Data.
    Sezgin E; Hussain SA; Rust S; Huang Y
    JMIR Form Res; 2023 Mar; 7():e43014. PubMed ID: 36881467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Korean clinical entity recognition from diagnosis text using BERT.
    Kim YM; Lee TH
    BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 7):242. PubMed ID: 32998724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing.
    Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR
    J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Entity-BERT model based on neuroscience and brain-like cognition in electronic medical record entity recognition.
    Lu W; Jiang J; Shi Y; Zhong X; Gu J; Huangfu L; Gong M
    Front Neurosci; 2023; 17():1259652. PubMed ID: 37799340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing transfer learning impact in biomedical cross-lingual named entity recognition and normalization.
    Rivera-Zavala RM; Martínez P
    BMC Bioinformatics; 2021 Dec; 22(Suppl 1):601. PubMed ID: 34920703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records.
    Li L; Zhao J; Hou L; Zhai Y; Shi J; Cui F
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):235. PubMed ID: 31801540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical named entity recognition and relation extraction using natural language processing of medical free text: A systematic review.
    Fraile Navarro D; Ijaz K; Rezazadegan D; Rahimi-Ardabili H; Dras M; Coiera E; Berkovsky S
    Int J Med Inform; 2023 Sep; 177():105122. PubMed ID: 37295138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.