These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 36384464)

  • 21. Drug knowledge discovery via multi-task learning and pre-trained models.
    Li D; Xiong Y; Hu B; Tang B; Peng W; Chen Q
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):251. PubMed ID: 34789238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Programming techniques for improving rule readability for rule-based information extraction natural language processing pipelines of unstructured and semi-structured medical texts.
    Ladas N; Borchert F; Franz S; Rehberg A; Strauch N; Sommer KK; Marschollek M; Gietzelt M
    Health Informatics J; 2023; 29(2):14604582231164696. PubMed ID: 37068028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Research on Chinese medical named entity recognition based on collaborative cooperation of multiple neural network models.
    Ji B; Li S; Yu J; Ma J; Tang J; Wu Q; Tan Y; Liu H; Ji Y
    J Biomed Inform; 2020 Apr; 104():103395. PubMed ID: 32109551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing Different Methods for Named Entity Recognition in Portuguese Neurology Text.
    Lopes F; Teixeira C; Gonçalo Oliveira H
    J Med Syst; 2020 Feb; 44(4):77. PubMed ID: 32112285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transformers for extracting breast cancer information from Spanish clinical narratives.
    Solarte-Pabón O; Montenegro O; García-Barragán A; Torrente M; Provencio M; Menasalvas E; Robles V
    Artif Intell Med; 2023 Sep; 143():102625. PubMed ID: 37673566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Hybrid Model for Family History Information Identification and Relation Extraction: Development and Evaluation of an End-to-End Information Extraction System.
    Kim Y; Heider PM; Lally IR; Meystre SM
    JMIR Med Inform; 2021 Apr; 9(4):e22797. PubMed ID: 33885370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying Patient Populations in Texts Describing Drug Approvals Through Deep Learning-Based Information Extraction: Development of a Natural Language Processing Algorithm.
    Gendrin A; Souliotis L; Loudon-Griffiths J; Aggarwal R; Amoako D; Desouza G; Dimitrievska S; Metcalfe P; Louvet E; Sahni H
    JMIR Form Res; 2023 Jun; 7():e44876. PubMed ID: 37347514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Named Entity Recognition of Medical Text Based on the Deep Neural Network.
    Yang T; He Y; Yang N
    J Healthc Eng; 2022; 2022():3990563. PubMed ID: 35295179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An imConvNet-based deep learning model for Chinese medical named entity recognition.
    Zheng Y; Han Z; Cai Y; Duan X; Sun J; Yang W; Huang H
    BMC Med Inform Decis Mak; 2022 Nov; 22(1):303. PubMed ID: 36411432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chinese medical entity recognition based on the dual-branch TENER model.
    Peng H; Zhang Z; Liu D; Qin X
    BMC Med Inform Decis Mak; 2023 Jul; 23(1):136. PubMed ID: 37488521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hybrid approach for named entity recognition in Chinese electronic medical record.
    Ji B; Liu R; Li S; Yu J; Wu Q; Tan Y; Wu J
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):64. PubMed ID: 30961597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Entity relationship extraction from Chinese electronic medical records based on feature augmentation and cascade binary tagging framework.
    Lu X; Tong J; Xia S
    Math Biosci Eng; 2024 Jan; 21(1):1342-1355. PubMed ID: 38303468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical Named Entity Recognition from Chinese Electronic Medical Records Based on Deep Learning Pretraining.
    Gong L; Zhang Z; Chen S
    J Healthc Eng; 2020; 2020():8829219. PubMed ID: 33299537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Similarity-Based Unsupervised Spelling Correction Using BioWordVec: Development and Usability Study of Bacterial Culture and Antimicrobial Susceptibility Reports.
    Kim T; Han SW; Kang M; Lee SH; Kim JH; Joo HJ; Sohn JW
    JMIR Med Inform; 2021 Feb; 9(2):e25530. PubMed ID: 33616536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facilitating clinical research through automation: Combining optical character recognition with natural language processing.
    Hom J; Nikowitz J; Ottesen R; Niland JC
    Clin Trials; 2022 Oct; 19(5):504-511. PubMed ID: 35608136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in Swedish and Spanish medical entity recognition in clinical texts using deep neural approaches.
    Weegar R; Pérez A; Casillas A; Oronoz M
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 7):274. PubMed ID: 31865900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration of natural and deep artificial cognitive models in medical images: BERT-based NER and relation extraction for electronic medical records.
    Guo B; Liu H; Niu L
    Front Neurosci; 2023; 17():1266771. PubMed ID: 37732304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing.
    Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T
    Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pre-trained BERT for Korean medical natural language processing.
    Kim Y; Kim JH; Lee JM; Jang MJ; Yum YJ; Kim S; Shin U; Kim YM; Joo HJ; Song S
    Sci Rep; 2022 Aug; 12(1):13847. PubMed ID: 35974113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.