BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36384623)

  • 21. Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris.
    Ma Z; Fang T; Thring RW; Li Y; Yu H; Zhou Q; Zhao M
    Harmful Algae; 2015 Sep; 48():21-29. PubMed ID: 29724472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitivity of Scenedesmus obliquus and Microcystis aeruginosa to atrazine: effects of acclimation and mixed cultures, and their removal ability.
    Chalifour A; LeBlanc A; Sleno L; Juneau P
    Ecotoxicology; 2016 Dec; 25(10):1822-1831. PubMed ID: 27670665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the way to cyanobacterial blooms: impact of the herbicide metribuzin on the competition between a green alga (Scenedesmus) and a cyanobacterium (Microcystis).
    Lürling M; Roessink I
    Chemosphere; 2006 Oct; 65(4):618-26. PubMed ID: 16540149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release.
    Ni L; Li D; Hu S; Wang P; Li S; Li Y; Li Y; Acharya K
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18637-44. PubMed ID: 26432265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overvalued allelopathy and overlooked effects of humic acid-like substances on Microcystis aeruginosa and Scenedesmus obliquus competition.
    Zhao M; Chen X; Ma N; Zhang Q; Qu D; Li M
    Harmful Algae; 2018 Sep; 78():18-26. PubMed ID: 30196921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of a toxic cyanobacterial bloom species, Microcystis aeruginosa, using the peptide HPA3NT3-A2.
    Han SI; Kim S; Choi KY; Lee C; Park Y; Choi YE
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):32255-32265. PubMed ID: 31598929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: New insights from proteomic and physiological analyses.
    Qian H; Zhu K; Lu H; Lavoie M; Chen S; Zhou Z; Deng Z; Chen J; Fu Z
    Sci Total Environ; 2016 Dec; 572():1213-1221. PubMed ID: 27522289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.
    Oukarroum A
    Curr Microbiol; 2016 Jun; 72(6):692-9. PubMed ID: 26868257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultraviolet-B radiation stress alters the competitive outcome of algae: Based on analyzing population dynamics and photosynthesis.
    Sun Y; Chen Y; Wei J; Zhang X; Zhang L; Yang Z; Huang Y
    Chemosphere; 2021 Jun; 272():129645. PubMed ID: 33465615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Freshwater algae competition and correlation between their growth and microcystin production.
    Álvarez X; Valero E; Cancela Á; Sánchez Á
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21577-21583. PubMed ID: 27518397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Algal production of extra and intra-cellular polysaccharides as an adaptive response to the toxin crude extract of Microcystis aeruginosa.
    El-Sheekh MM; Khairy HM; El-Shenody R
    Iranian J Environ Health Sci Eng; 2012 Nov; 9(1):10. PubMed ID: 23369164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of harmful algal blooms in freshwater by buoyant-bead flotation using chitosan-coated fly ash cenospheres.
    Zou X; Xu K; Xue Y; Qu Y; Li Y
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):29239-29247. PubMed ID: 32440871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Submerged vegetation removal promotes shift of dominant phytoplankton functional groups in a eutrophic lake.
    Dong J; Yang K; Li S; Li G; Song L
    J Environ Sci (China); 2014 Aug; 26(8):1699-707. PubMed ID: 25108726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparing effects of berberine on the growth and photosynthetic activities of Microcystis aeruginosa and Chlorella pyrenoidosa.
    Liu L; Zhang S; Dai W; Bi X; Zhang D
    Water Sci Technol; 2019 Sep; 80(6):1155-1162. PubMed ID: 31799959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Algicidal mechanism of Raoultella ornithinolytica against Microcystis aeruginosa: Antioxidant response, photosynthetic system damage and microcystin degradation.
    Li D; Kang X; Chu L; Wang Y; Song X; Zhao X; Cao X
    Environ Pollut; 2021 Oct; 287():117644. PubMed ID: 34426391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium
    Zhang M; Lu T; Paerl HW; Chen Y; Zhang Z; Zhou Z; Qian H
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31420344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of Algal Community Stability in Harmful Algal Blooms in River-Connected Lakes.
    Kim MS; Kim KH; Hwang SJ; Lee TK
    Microb Ecol; 2021 Aug; 82(2):309-318. PubMed ID: 33469721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of Phenolic Pollution on Interspecific Competition between
    Tan X; Dai K; Parajuli K; Hang X; Duan Z; Hu Y
    Int J Environ Res Public Health; 2019 Oct; 16(20):. PubMed ID: 31627270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Access the toxic effect of the antibiotic cefradine and its UV light degradation products on two freshwater algae.
    Chen JQ; Guo RX
    J Hazard Mater; 2012 Mar; 209-210():520-3. PubMed ID: 22305202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Primary study on the feeding characteristics of a golden alga on Microcystis aeruginosa.
    Zhang X; Hu HY; Hong Y
    Water Sci Technol; 2009; 59(9):1727-32. PubMed ID: 19448307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.