These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36385117)

  • 21. Prediction of Room-Temperature Superconductivity in Quasi-Atomic H
    Jiang Q; Duan D; Song H; Zhang Z; Huo Z; Jiang S; Cui T; Yao Y
    Adv Sci (Weinh); 2024 Sep; 11(35):e2405561. PubMed ID: 39033541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stable structures and superconducting properties of Ca-La-H compounds under pressure.
    Yang K; Sun H; Chen H; Chen L; Li B; Lu W
    J Phys Condens Matter; 2022 Jun; 34(35):. PubMed ID: 35714608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tellurium Hydrides at High Pressures: High-Temperature Superconductors.
    Zhong X; Wang H; Zhang J; Liu H; Zhang S; Song HF; Yang G; Zhang L; Ma Y
    Phys Rev Lett; 2016 Feb; 116(5):057002. PubMed ID: 26894729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational Design of Novel Hydrogen-Rich YS-H Compounds.
    Chen J; Cui W; Shi J; Xu M; Hao J; Durajski AP; Li Y
    ACS Omega; 2019 Sep; 4(10):14317-14323. PubMed ID: 31508557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superconducting ternary hydrides in Ca-U-H under high pressure.
    Wu J; Zhu B; Ding C; Pei C; Wang Q; Sun J; Qi Y
    J Phys Condens Matter; 2024 Jan; 36(16):. PubMed ID: 38194718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategies for improving the superconductivity of hydrides under high pressure.
    Liu P; Wang C; Zhang D; Wang X; Duan D; Liu Z; Cui T
    J Phys Condens Matter; 2024 Jun; 36(35):. PubMed ID: 38754446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase Diagram and High-Temperature Superconductivity of Compressed Selenium Hydrides.
    Zhang S; Wang Y; Zhang J; Liu H; Zhong X; Song HF; Yang G; Zhang L; Ma Y
    Sci Rep; 2015 Oct; 5():15433. PubMed ID: 26490223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and superconductivity in yttrium-cerium hydrides at high pressures.
    Chen LC; Luo T; Cao ZY; Dalladay-Simpson P; Huang G; Peng D; Zhang LL; Gorelli FA; Zhong GH; Lin HQ; Chen XJ
    Nat Commun; 2024 Feb; 15(1):1809. PubMed ID: 38418489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superconducting Zirconium Polyhydrides at Moderate Pressures.
    Xie H; Zhang W; Duan D; Huang X; Huang Y; Song H; Feng X; Yao Y; Pickard CJ; Cui T
    J Phys Chem Lett; 2020 Feb; 11(3):646-651. PubMed ID: 31903761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinguishing the Structures of High-Pressure Hydrides with Nuclear Magnetic Resonance Spectroscopy.
    Chen D; Gao W; Jiang Q
    J Phys Chem Lett; 2020 Nov; 11(21):9439-9445. PubMed ID: 33108187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Pressure Synthesis of Magnetic Neodymium Polyhydrides.
    Zhou D; Semenok DV; Xie H; Huang X; Duan D; Aperis A; Oppeneer PM; Galasso M; Kartsev AI; Kvashnin AG; Oganov AR; Cui T
    J Am Chem Soc; 2020 Feb; 142(6):2803-2811. PubMed ID: 31967807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Composition and structural characteristics of compressed alkaline earth metal hydrides.
    Tao YL; Zeng W; Gao J; Liu ZT; Jiao Z; Liu QJ
    Phys Chem Chem Phys; 2023 Oct; 25(38):26225-26235. PubMed ID: 37740369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lattice dynamic stability and electronic structures of ternary hydrides La
    Tsuppayakorn-Aek P; Sukmas W; Pluengphon P; Inceesungvorn B; Phansuke P; Kaewtubtim P; Ahuja R; Bovornratanaraks T; Luo W
    RSC Adv; 2022 Sep; 12(41):26808-26814. PubMed ID: 36320850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clathrate metal superhydrides under high-pressure conditions: enroute to room-temperature superconductivity.
    Sun Y; Zhong X; Liu H; Ma Y
    Natl Sci Rev; 2024 Jul; 11(7):nwad270. PubMed ID: 38883291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic field screening in hydrogen-rich high-temperature superconductors.
    Minkov VS; Bud'ko SL; Balakirev FF; Prakapenka VB; Chariton S; Husband RJ; Liermann HP; Eremets MI
    Nat Commun; 2022 Jun; 13(1):3194. PubMed ID: 35680889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery of superconductivity in technetium borides at moderate pressures.
    Tao X; Yang A; Quan Y; Wan B; Yang S; Zhang P
    Phys Chem Chem Phys; 2024 Jun; 26(24):16963-16971. PubMed ID: 38742395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Data-driven Design of High Pressure Hydride Superconductors using DFT and Deep Learning.
    Wines D; Choudhary K
    Mater Futur; 2024; 3(2):. PubMed ID: 38841205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Local electronic structure rearrangements and strong anharmonicity in YH
    Purans J; Menushenkov AP; Besedin SP; Ivanov AA; Minkov VS; Pudza I; Kuzmin A; Klementiev KV; Pascarelli S; Mathon O; Rosa AD; Irifune T; Eremets MI
    Nat Commun; 2021 Mar; 12(1):1765. PubMed ID: 33741970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence of near-ambient superconductivity in a N-doped lutetium hydride.
    Dasenbrock-Gammon N; Snider E; McBride R; Pasan H; Durkee D; Khalvashi-Sutter N; Munasinghe S; Dissanayake SE; Lawler KV; Salamat A; Dias RP
    Nature; 2023 Mar; 615(7951):244-250. PubMed ID: 36890373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A perspective on reducing stabilizing pressure for high-temperature superconductivity in hydrides.
    Jiang Q; Chen L; Du M; Duan D
    J Phys Condens Matter; 2024 Sep; 36(49):. PubMed ID: 39168147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.