These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36385141)

  • 1. A Bayesian generative neural network framework for epidemic inference problems.
    Biazzo I; Braunstein A; Dall'Asta L; Mazza F
    Sci Rep; 2022 Nov; 12(1):19673. PubMed ID: 36385141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidemic mitigation by statistical inference from contact tracing data.
    Baker A; Biazzo I; Braunstein A; Catania G; Dall'Asta L; Ingrosso A; Krzakala F; Mazza F; Mézard M; Muntoni AP; Refinetti M; Sarao Mannelli S; Zdeborová L
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34312253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian inference of epidemics on networks via belief propagation.
    Altarelli F; Braunstein A; Dall'Asta L; Lage-Castellanos A; Zecchina R
    Phys Rev Lett; 2014 Mar; 112(11):118701. PubMed ID: 24702425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probabilistic predictions of SIS epidemics on networks based on population-level observations.
    Zerenner T; Di Lauro F; Dashti M; Berthouze L; Kiss IZ
    Math Biosci; 2022 Aug; 350():108854. PubMed ID: 35659615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience.
    Fengler A; Govindarajan LN; Chen T; Frank MJ
    Elife; 2021 Apr; 10():. PubMed ID: 33821788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network inference from population-level observation of epidemics.
    Di Lauro F; Croix JC; Dashti M; Berthouze L; Kiss IZ
    Sci Rep; 2020 Nov; 10(1):18779. PubMed ID: 33139773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference of causality in epidemics on temporal contact networks.
    Braunstein A; Ingrosso A
    Sci Rep; 2016 Jun; 6():27538. PubMed ID: 27283451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Bayesian risk prediction for epidemics using contact tracing.
    Jewell CP; Roberts GO
    Biostatistics; 2012 Sep; 13(4):567-79. PubMed ID: 22674466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data.
    Morelli MJ; Thébaud G; Chadœuf J; King DP; Haydon DT; Soubeyrand S
    PLoS Comput Biol; 2012; 8(11):e1002768. PubMed ID: 23166481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensor-based localization of epidemic sources on human mobility networks.
    Li J; Manitz J; Bertuzzo E; Kolaczyk ED
    PLoS Comput Biol; 2021 Jan; 17(1):e1008545. PubMed ID: 33503024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution epidemic simulation using within-host infection and contact data.
    Nguyen VK; Mikolajczyk R; Hernandez-Vargas EA
    BMC Public Health; 2018 Jul; 18(1):886. PubMed ID: 30016958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital Contact Tracing Based on a Graph Database Algorithm for Emergency Management During the COVID-19 Epidemic: Case Study.
    Mao Z; Yao H; Zou Q; Zhang W; Dong Y
    JMIR Mhealth Uhealth; 2021 Jan; 9(1):e26836. PubMed ID: 33460389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference of Transmission Network Structure from HIV Phylogenetic Trees.
    Giardina F; Romero-Severson EO; Albert J; Britton T; Leitner T
    PLoS Comput Biol; 2017 Jan; 13(1):e1005316. PubMed ID: 28085876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian inference of spreading processes on networks.
    Dutta R; Mira A; Onnela JP
    Proc Math Phys Eng Sci; 2018 Jul; 474(2215):20180129. PubMed ID: 30100809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices.
    Machens A; Gesualdo F; Rizzo C; Tozzi AE; Barrat A; Cattuto C
    BMC Infect Dis; 2013 Apr; 13():185. PubMed ID: 23618005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis.
    Firestone SM; Ward MP; Christley RM; Dhand NK
    Prev Vet Med; 2011 Dec; 102(3):185-95. PubMed ID: 21852007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic Networks and Parameters Inferred from HIV Nucleotide Sequences of High-Risk and General Population Groups in Uganda: Implications for Epidemic Control.
    Bbosa N; Ssemwanga D; Nsubuga RN; Kiwanuka N; Bagaya BS; Kitayimbwa JM; Ssekagiri A; Yebra G; Kaleebu P; Leigh-Brown A
    Viruses; 2021 May; 13(6):. PubMed ID: 34073846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of recurrent neural dynamics for monotone inclusion with application to Bayesian inference.
    Yi P; Ching S
    Neural Netw; 2020 Nov; 131():231-241. PubMed ID: 32818873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
    Bioglio L; Génois M; Vestergaard CL; Poletto C; Barrat A; Colizza V
    BMC Infect Dis; 2016 Nov; 16(1):676. PubMed ID: 27842507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recursive contact tracing in Reed-Frost epidemic models.
    Shivam S; Bulchandani VB; Sondhi SL
    Phys Biol; 2021 Aug; 18(6):. PubMed ID: 34186523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.