These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36385143)

  • 1. XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection.
    Gerber PP; Donde MJ; Matheson NJ; Taylor AI
    Nat Commun; 2022 Nov; 13(1):6716. PubMed ID: 36385143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting non-coding RNA family members with artificial endonuclease XNAzymes.
    Donde MJ; Rochussen AM; Kapoor S; Taylor AI
    Commun Biol; 2022 Sep; 5(1):1010. PubMed ID: 36153384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Nucleocapsid Proteins of SARS-CoV-2 and Its Close Relative Bat Coronavirus RaTG13 Are Capable of Inhibiting PKR- and RNase L-Mediated Antiviral Pathways.
    LeBlanc K; Lynch J; Layne C; Vendramelli R; Sloan A; Tailor N; Deschambault Y; Zhang F; Kobasa D; Safronetz D; Xiang Y; Cao J
    Microbiol Spectr; 2023 Jun; 11(3):e0099423. PubMed ID: 37154717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SARS-CoV-2 Nucleocapsid Protein Is a Potential Therapeutic Target for Anticoronavirus Drug Discovery.
    Royster A; Ren S; Ma Y; Pintado M; Kahng E; Rowan S; Mir S; Mir M
    Microbiol Spectr; 2023 Jun; 11(3):e0118623. PubMed ID: 37199631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Functional RNA Motifs of SARS-CoV-2 and Influenza A Virus as a Target of Viral Inhibitors.
    Szczesniak I; Baliga-Gil A; Jarmolowicz A; Soszynska-Jozwiak M; Kierzek E
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence, Transmission, and Potential Therapeutic Targets for the COVID-19 Pandemic Associated with the SARS-CoV-2.
    Patil AM; Göthert JR; Khairnar V
    Cell Physiol Biochem; 2020 Aug; 54(4):767-790. PubMed ID: 32830930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SARS-CoV-2
    Lehrer S; Rheinstein PH
    In Vivo; 2020 Jun; 34(3 Suppl):1629-1632. PubMed ID: 32503821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering a Reliable and Convenient SARS-CoV-2 Replicon System for Analysis of Viral RNA Synthesis and Screening of Antiviral Inhibitors.
    Luo Y; Yu F; Zhou M; Liu Y; Xia B; Zhang X; Liu J; Zhang J; Du Y; Li R; Wu L; Zhang X; Pan T; Guo D; Peng T; Zhang H
    mBio; 2021 Jan; 12(1):. PubMed ID: 33468688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza.
    Abbott TR; Dhamdhere G; Liu Y; Lin X; Goudy L; Zeng L; Chemparathy A; Chmura S; Heaton NS; Debs R; Pande T; Endy D; La Russa MF; Lewis DB; Qi LS
    Cell; 2020 May; 181(4):865-876.e12. PubMed ID: 32353252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Coronavirus Entry
    Outlaw VK; Bovier FT; Mears MC; Cajimat MN; Zhu Y; Lin MJ; Addetia A; Lieberman NAP; Peddu V; Xie X; Shi PY; Greninger AL; Gellman SH; Bente DA; Moscona A; Porotto M
    mBio; 2020 Oct; 11(5):. PubMed ID: 33082259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Integral Membrane Protein ZMPSTE24 Protects Cells from SARS-CoV-2 Spike-Mediated Pseudovirus Infection and Syncytia Formation.
    Shilagardi K; Spear ED; Abraham R; Griffin DE; Michaelis S
    mBio; 2022 Oct; 13(5):e0254322. PubMed ID: 36197088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine algal antagonists targeting 3CL protease and spike glycoprotein of SARS-CoV-2: a computational approach for anti-COVID-19 drug discovery.
    Arunkumar M; Gunaseelan S; Kubendran Aravind M; Mohankumar V; Anupam P; Harikrishnan M; Siva A; Ashokkumar B; Varalakshmi P
    J Biomol Struct Dyn; 2022; 40(19):8961-8988. PubMed ID: 34014150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sofosbuvir terminated RNA is more resistant to SARS-CoV-2 proofreader than RNA terminated by Remdesivir.
    Jockusch S; Tao C; Li X; Chien M; Kumar S; Morozova I; Kalachikov S; Russo JJ; Ju J
    Sci Rep; 2020 Oct; 10(1):16577. PubMed ID: 33024223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of nsp14 Exonuclease from SARS-CoV-2 towards RNAs with Modified 3'-Termini.
    Yuyukina SK; Barmatov AE; Bizyaev SN; Stetsenko DA; Sergeeva OV; Zatsepin TS; Zharkov DO
    Dokl Biochem Biophys; 2023 Apr; 509(1):65-69. PubMed ID: 37340295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COVID-19: Discovery, diagnostics and drug development.
    Asselah T; Durantel D; Pasmant E; Lau G; Schinazi RF
    J Hepatol; 2021 Jan; 74(1):168-184. PubMed ID: 33038433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ravaging SARS-CoV-2: rudimentary diagnosis and puzzling immunological responses.
    Mukherjee TK; Malik P; Maitra R; Hoidal JR
    Curr Med Res Opin; 2021 Feb; 37(2):207-217. PubMed ID: 33306409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulation of genes could inhibit SARS-CoV-2 infection that causes COVID-19 pandemics.
    Banerjee A; Mukherjee S; Maji BK
    Exp Biol Med (Maywood); 2021 Jul; 246(14):1643-1649. PubMed ID: 33899542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential RNA-dependent RNA polymerase (RdRp) inhibitors as prospective drug candidates for SARS-CoV-2.
    Bekheit MS; Panda SS; Girgis AS
    Eur J Med Chem; 2023 Apr; 252():115292. PubMed ID: 36965227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates.
    Savastano A; Ibáñez de Opakua A; Rankovic M; Zweckstetter M
    Nat Commun; 2020 Nov; 11(1):6041. PubMed ID: 33247108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient CRISPR-Cas13d-Based Antiviral Strategy to Combat SARS-CoV-2.
    Hussein M; Andrade Dos Ramos Z; Vink MA; Kroon P; Yu Z; Enjuanes L; Zuñiga S; Berkhout B; Herrera-Carrillo E
    Viruses; 2023 Mar; 15(3):. PubMed ID: 36992394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.