These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36385513)
1. Structural and Functional Insight into the Mechanism of the Fe-S Cluster-Dependent Dehydratase from Paralcaligenes ureilyticus. Bayaraa T; Lonhienne T; Sutiono S; Melse O; Brück TB; Marcellin E; Bernhardt PV; Boden M; Harmer JR; Sieber V; Guddat LW; Schenk G Chemistry; 2023 Feb; 29(9):e202203140. PubMed ID: 36385513 [TBL] [Abstract][Full Text] [Related]
2. Structure-Guided Modulation of the Catalytic Properties of [2Fe-2S]-Dependent Dehydratases. Melse O; Sutiono S; Haslbeck M; Schenk G; Antes I; Sieber V Chembiochem; 2022 May; 23(10):e202200088. PubMed ID: 35263023 [TBL] [Abstract][Full Text] [Related]
3. Unveiling the importance of the C-terminus in the sugar acid dehydratase of the IlvD/EDD superfamily. Ren Y; Vettenranta E; Penttinen L; Blomster Andberg M; Koivula A; Rouvinen J; Hakulinen N Appl Microbiol Biotechnol; 2024 Aug; 108(1):436. PubMed ID: 39126499 [TBL] [Abstract][Full Text] [Related]
4. The crystal structure of D-xylonate dehydratase reveals functional features of enzymes from the Ilv/ED dehydratase family. Rahman MM; Andberg M; Koivula A; Rouvinen J; Hakulinen N Sci Rep; 2018 Jan; 8(1):865. PubMed ID: 29339766 [TBL] [Abstract][Full Text] [Related]
5. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily. Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118 [TBL] [Abstract][Full Text] [Related]
6. Function and maturation of the Fe-S center in dihydroxyacid dehydratase from Gao H; Azam T; Randeniya S; Couturier J; Rouhier N; Johnson MK J Biol Chem; 2018 Mar; 293(12):4422-4433. PubMed ID: 29425096 [TBL] [Abstract][Full Text] [Related]
7. Characterization and mutagenesis of two novel iron-sulphur cluster pentonate dehydratases. Andberg M; Aro-Kärkkäinen N; Carlson P; Oja M; Bozonnet S; Toivari M; Hakulinen N; O'Donohue M; Penttilä M; Koivula A Appl Microbiol Biotechnol; 2016 Sep; 100(17):7549-63. PubMed ID: 27102126 [TBL] [Abstract][Full Text] [Related]
8. The Crystal Structure of a Bacterial l-Arabinonate Dehydratase Contains a [2Fe-2S] Cluster. Rahman MM; Andberg M; Thangaraj SK; Parkkinen T; Penttilä M; Jänis J; Koivula A; Rouvinen J; Hakulinen N ACS Chem Biol; 2017 Jul; 12(7):1919-1927. PubMed ID: 28574691 [TBL] [Abstract][Full Text] [Related]
9. Probing catalysis by Escherichia coli dTDP-glucose-4,6-dehydratase: identification and preliminary characterization of functional amino acid residues at the active site. Hegeman AD; Gross JW; Frey PA Biochemistry; 2001 Jun; 40(22):6598-610. PubMed ID: 11380254 [TBL] [Abstract][Full Text] [Related]
10. Crystallization and X-ray diffraction analysis of an L-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii and a D-xylonate dehydratase from Caulobacter crescentus. Rahman MM; Andberg M; Koivula A; Rouvinen J; Hakulinen N Acta Crystallogr F Struct Biol Commun; 2016 Aug; 72(Pt 8):604-8. PubMed ID: 27487924 [TBL] [Abstract][Full Text] [Related]
11. Identification and characterization of L-arabonate dehydratase, L-2-keto-3-deoxyarabonate dehydratase, and L-arabinolactonase involved in an alternative pathway of L-arabinose metabolism. Novel evolutionary insight into sugar metabolism. Watanabe S; Shimada N; Tajima K; Kodaki T; Makino K J Biol Chem; 2006 Nov; 281(44):33521-36. PubMed ID: 16950779 [TBL] [Abstract][Full Text] [Related]
12. The active site of the Bashiri G; Grove TL; Hegde SS; Lagautriere T; Gerfen GJ; Almo SC; Squire CJ; Blanchard JS; Baker EN J Biol Chem; 2019 Aug; 294(35):13158-13170. PubMed ID: 31315931 [TBL] [Abstract][Full Text] [Related]
13. Attempts to develop an enzyme converting DHIV to KIV. Oki K; Lee FS; Mayo SL Protein Eng Des Sel; 2019 Dec; 32(6):261-270. PubMed ID: 31872250 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of imidazole glycerol-phosphate dehydratase: duplication of an unusual fold. Sinha SC; Chaudhuri BN; Burgner JW; Yakovleva G; Davisson VJ; Smith JL J Biol Chem; 2004 Apr; 279(15):15491-8. PubMed ID: 14724278 [TBL] [Abstract][Full Text] [Related]
15. Studies on the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase in escherichia coli crude extract. Isolation of O-acetylserine sulfhydrylases A and B and beta-cystathionase based on their ability to mobilize sulfur from cysteine and to participate in Fe-S cluster synthesis. Flint DH; Tuminello JF; Miller TJ J Biol Chem; 1996 Jul; 271(27):16053-67. PubMed ID: 8663055 [TBL] [Abstract][Full Text] [Related]
16. Purification and characterization of the imidazoleglycerol-phosphate dehydratase of Saccharomyces cerevisiae from recombinant Escherichia coli. Hawkes TR; Thomas PG; Edwards LS; Rayner SJ; Wilkinson KW; Rice DW Biochem J; 1995 Mar; 306 ( Pt 2)(Pt 2):385-97. PubMed ID: 7887893 [TBL] [Abstract][Full Text] [Related]
17. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327 [TBL] [Abstract][Full Text] [Related]
18. Computation-facilitated assignment of the function in the enolase superfamily: a regiochemically distinct galactarate dehydratase from Oceanobacillus iheyensis . Rakus JF; Kalyanaraman C; Fedorov AA; Fedorov EV; Mills-Groninger FP; Toro R; Bonanno J; Bain K; Sauder JM; Burley SK; Almo SC; Jacobson MP; Gerlt JA Biochemistry; 2009 Dec; 48(48):11546-58. PubMed ID: 19883118 [TBL] [Abstract][Full Text] [Related]
19. Characterization of recombinantly expressed dihydroxy-acid dehydratase from Sulfobus solfataricus-A key enzyme for the conversion of carbohydrates into chemicals. Carsten JM; Schmidt A; Sieber V J Biotechnol; 2015 Oct; 211():31-41. PubMed ID: 26102631 [TBL] [Abstract][Full Text] [Related]
20. Structural and kinetic analysis of Escherichia coli GDP-mannose 4,6 dehydratase provides insights into the enzyme's catalytic mechanism and regulation by GDP-fucose. Somoza JR; Menon S; Schmidt H; Joseph-McCarthy D; Dessen A; Stahl ML; Somers WS; Sullivan FX Structure; 2000 Feb; 8(2):123-35. PubMed ID: 10673432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]