BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36385527)

  • 1. THP9 enhances seed protein content and nitrogen-use efficiency in maize.
    Huang Y; Wang H; Zhu Y; Huang X; Li S; Wu X; Zhao Y; Bao Z; Qin L; Jin Y; Cui Y; Ma G; Xiao Q; Wang Q; Wang J; Yang X; Liu H; Lu X; Larkins BA; Wang W; Wu Y
    Nature; 2022 Dec; 612(7939):292-300. PubMed ID: 36385527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Analysis of Teosinte Alleles for Kernel Composition Traits in Maize.
    Karn A; Gillman JD; Flint-Garcia SA
    G3 (Bethesda); 2017 Apr; 7(4):1157-1164. PubMed ID: 28188181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte.
    Flint-Garcia SA; Bodnar AL; Scott MP
    Theor Appl Genet; 2009 Oct; 119(6):1129-42. PubMed ID: 19701625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High segregation distortion in maize B73 x teosinte crosses.
    Wang G; He QQ; Xu ZK; Song RT
    Genet Mol Res; 2012 Mar; 11(1):693-706. PubMed ID: 22535405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased seminal root number associated with domestication improves nitrogen and phosphorus acquisition in maize seedlings.
    Perkins AC; Lynch JP
    Ann Bot; 2021 Sep; 128(4):453-468. PubMed ID: 34120166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and expression analysis of hemoglobin genes from maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis).
    Aréchaga-Ocampo E; Saenz-Rivera J; Sarath G; Klucas RV; Arredondo-Peter R
    Biochim Biophys Acta; 2001 Nov; 1522(1):1-8. PubMed ID: 11718894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations.
    Liu Z; Garcia A; McMullen MD; Flint-Garcia SA
    G3 (Bethesda); 2016 Aug; 6(8):2523-30. PubMed ID: 27317774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous hybridization between maize and teosinte.
    Ellstrand NC; Garner LC; Hegde S; Guadagnuolo R; Blancas L
    J Hered; 2007; 98(2):183-7. PubMed ID: 17400586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of Zea mays subspecies mexicana haplotypes to modern maize.
    Yang N; Xu XW; Wang RR; Peng WL; Cai L; Song JM; Li W; Luo X; Niu L; Wang Y; Jin M; Chen L; Luo J; Deng M; Wang L; Pan Q; Liu F; Jackson D; Yang X; Chen LL; Yan J
    Nat Commun; 2017 Nov; 8(1):1874. PubMed ID: 29187731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Female gametophyte development and double fertilization in Balsas teosinte, Zea mays subsp. parviglumis (Poaceae).
    Wu CC; Diggle PK; Friedman WE
    Sex Plant Reprod; 2011 Sep; 24(3):219-29. PubMed ID: 21380710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule long-read sequencing reveals extensive genomic and transcriptomic variation between maize and its wild relative teosinte (Zea mays ssp. parviglumis).
    Li Z; Han L; Luo Z; Li L
    Mol Ecol Resour; 2022 Jan; 22(1):272-282. PubMed ID: 34157795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines.
    Han J; Wang L; Zheng H; Pan X; Li H; Chen F; Li X
    Planta; 2015 Oct; 242(4):935-49. PubMed ID: 26013182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine mapping of a quantitative resistance gene for gray leaf spot of maize (Zea mays L.) derived from teosinte (Z. mays ssp. parviglumis).
    Zhang X; Yang Q; Rucker E; Thomason W; Balint-Kurti P
    Theor Appl Genet; 2017 Jun; 130(6):1285-1295. PubMed ID: 28342108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Teosinte confers specific alleles and yield potential to maize improvement.
    Wang Q; Liao Z; Zhu C; Gou X; Liu Y; Xie W; Wu F; Feng X; Xu J; Li J; Lu Y
    Theor Appl Genet; 2022 Oct; 135(10):3545-3562. PubMed ID: 36121453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding Maize Genetic Resources with Predomestication Alleles: Maize-Teosinte Introgression Populations.
    Liu Z; Cook J; Melia-Hancock S; Guill K; Bottoms C; Garcia A; Ott O; Nelson R; Recker J; Balint-Kurti P; Larsson S; Lepak N; Buckler E; Trimble L; Tracy W; McMullen MD; Flint-Garcia SA
    Plant Genome; 2016 Mar; 9(1):. PubMed ID: 27898757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving maize seed protein content and nitrogen-use efficiency by a teosinte asparagine synthetase.
    Liu Y; Chu C
    Mol Plant; 2023 Mar; 16(3):497-499. PubMed ID: 36461635
    [No Abstract]   [Full Text] [Related]  

  • 17. Relative fitness of transgenic vs. non-transgenic maize x teosinte hybrids: a field evaluation.
    Guadagnuolo R; Clegg J; Ellstrand NC
    Ecol Appl; 2006 Oct; 16(5):1967-74. PubMed ID: 17069387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative recombination distances among Zea mays L. inbreds, wide crosses and interspecific hybrids.
    Williams CG; Goodman MM; Stuber CW
    Genetics; 1995 Dec; 141(4):1573-81. PubMed ID: 8601495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-Seq identification of candidate defense genes by analyzing Mythimna separata feeding-damage induced systemic resistance in balsas teosinte.
    Yang L; Gao J; Zhang Y; Tian J; Sun Y; Wang C
    Pest Manag Sci; 2020 Jan; 76(1):333-342. PubMed ID: 31207043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation.
    Guo L; Wang X; Zhao M; Huang C; Li C; Li D; Yang CJ; York AM; Xue W; Xu G; Liang Y; Chen Q; Doebley JF; Tian F
    Curr Biol; 2018 Sep; 28(18):3005-3015.e4. PubMed ID: 30220503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.