These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36385575)

  • 1. Additive manufacturing of Zn with submicron resolution and its conversion into Zn/ZnO core-shell structures.
    Nydegger M; Pruška A; Galinski H; Zenobi R; Reiser A; Spolenak R
    Nanoscale; 2022 Dec; 14(46):17418-17427. PubMed ID: 36385575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale.
    Reiser A; Lindén M; Rohner P; Marchand A; Galinski H; Sologubenko AS; Wheeler JM; Zenobi R; Poulikakos D; Spolenak R
    Nat Commun; 2019 Apr; 10(1):1853. PubMed ID: 31015443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrohydrodynamic 3D Printing of Aqueous Solutions.
    Reizabal A; Tandon B; Lanceros-Méndez S; Dalton PD
    Small; 2023 Feb; 19(7):e2205255. PubMed ID: 36482162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Additive Micromodulation of Grain Size in Nanocrystalline Copper Nanostructures by Electrohydrodynamic Redox 3D Printing.
    Menétrey M; Koch L; Sologubenko A; Gerstl S; Spolenak R; Reiser A
    Small; 2022 Dec; 18(51):e2205302. PubMed ID: 36328737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beginner's Guide to Micro- and Nanoscale Electrochemical Additive Manufacturing.
    Hengsteler J; Kanes KA; Khasanova L; Momotenko D
    Annu Rev Anal Chem (Palo Alto Calif); 2023 Jun; 16(1):71-91. PubMed ID: 37068744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designs and applications of electrohydrodynamic 3D printing.
    Gao D; Zhou JG
    Int J Bioprint; 2019; 5(1):172. PubMed ID: 32782979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Area-Selective Atomic Layer Deposition Patterned by Electrohydrodynamic Jet Printing for Additive Manufacturing of Functional Materials and Devices.
    Cho TH; Farjam N; Allemang CR; Pannier CP; Kazyak E; Huber C; Rose M; Trejo O; Peterson RL; Barton K; Dasgupta NP
    ACS Nano; 2020 Dec; 14(12):17262-17272. PubMed ID: 33216539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms and modeling of electrohydrodynamic phenomena.
    Gao D; Yao D; Leist SK; Fei Y; Zhou J
    Int J Bioprint; 2019; 5(1):166. PubMed ID: 32782978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Strategy toward Realizing Narrow Line with High Electrical Conductivity by Electrohydrodynamic Printing.
    Liang H; Yao R; Zhang G; Zhang X; Liang Z; Yang Y; Ning H; Zhong J; Qiu T; Peng J
    Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrohydrodynamic printing of submicron-microscale hybrid scaffolds with improved cellular adhesion and proliferation behaviors.
    Zhang B; Li S; He J; Lei Q; Wu C; Song A; Zhang C
    Nanotechnology; 2022 Dec; 34(10):. PubMed ID: 36562511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Structural Colors with Additive Manufacturing Using Atomic Layer Deposition.
    Rorem BA; Cho TH; Farjam N; Lenef JD; Barton K; Dasgupta NP; Guo LJ
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31099-31108. PubMed ID: 35786830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure-driven electrical conductivity optimization in additively manufactured microscale copper interconnects.
    Menétrey M; van Nisselroy C; Xu M; Hengsteler J; Spolenak R; Zambelli T
    RSC Adv; 2023 May; 13(20):13575-13585. PubMed ID: 37152573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Resolution Nanoanalytical Insights into Particle Formation in SnO
    Bürger JC; Lee S; Büttner J; Gutsch S; Kolhep M; Fischer A; Ross FM; Zacharias M
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28387-28397. PubMed ID: 37269318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Additive Manufacturing of Metal Structures at the Micrometer Scale.
    Hirt L; Reiser A; Spolenak R; Zambelli T
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28052421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving photoelectrochemical response of ZnO nanowire arrays by coating with p-type ZnO-resembling metal-organic framework.
    Gao Q; Kang H; Cai Y; Xue D; Yu F; Fang J; Yang Y
    Dalton Trans; 2019 Jun; 48(25):9310-9316. PubMed ID: 31166332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Patterning of Perovskite Nanocrystals on Nanophotonic Cavities with Electrohydrodynamic Inkjet Printing.
    Cohen TA; Sharp D; Kluherz KT; Chen Y; Munley C; Anderson RT; Swanson CJ; De Yoreo JJ; Luscombe CK; Majumdar A; Gamelin DR; Mackenzie JD
    Nano Lett; 2022 Jul; 22(14):5681-5688. PubMed ID: 35819950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promotional Effects of Zn Doping on Cu/Core-Shell Al-MCM-41 for Selective Catalytic Reduction of NO with NH₃.
    Imyen T; Yigit N; Poo-Arporn Y; Föttinger K; Rupprechter G; Kongkachuichay P
    J Nanosci Nanotechnol; 2019 Feb; 19(2):743-757. PubMed ID: 30360150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of Metal Nanostructure Deposition on Silicon Laser-Induced Periodic Surface Structures by Galvanic Replacement.
    Simpson NG; Broadhead EJ; Casto AM; Tibbetts KM
    Langmuir; 2024 Jan; 40(1):241-250. PubMed ID: 38113511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and Experimental Study of the Localized Electrochemical Micro Additive Manufacturing Technology Based on the FluidFM.
    Ren W; Xu J; Lian Z; Yu P; Yu H
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32575589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc oxide nanostructures: epitaxially growing from hexagonal zinc nanostructures.
    Fei Guo C; Wang Y; Jiang P; Cao S; Miao J; Zhang Z; Liu Q
    Nanotechnology; 2008 Nov; 19(44):445710. PubMed ID: 21832752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.