BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36385734)

  • 1. A vector finite element approach to temperature dependent parameters of microwave ablation for liver cancer.
    Gangadhara B; Mariappan P
    Int J Numer Method Biomed Eng; 2023 Jan; 39(1):e3661. PubMed ID: 36385734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D modeling of vector/edge finite element method for multi-ablation technique for large tumor-computational approach.
    Boregowda G; Mariappan P
    PLoS One; 2023; 18(7):e0289262. PubMed ID: 37506084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and simulation of novel antenna for the treatment of hepatocellular carcinoma using finite element method.
    Maini S; Marwaha A
    Electromagn Biol Med; 2013 Sep; 32(3):373-81. PubMed ID: 23324105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning.
    Sebek J; Albin N; Bortel R; Natarajan B; Prakash P
    Med Phys; 2016 May; 43(5):2649. PubMed ID: 27147374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes-A computational approach.
    Tehrani MHH; Soltani M; Kashkooli FM; Raahemifar K
    PLoS One; 2020; 15(6):e0233219. PubMed ID: 32542034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FEM simulation of tapered cap floating sleeve antenna for hepatocellular carcinoma therapy.
    Maini S
    Electromagn Biol Med; 2016; 35(2):152-60. PubMed ID: 26115000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coaxial slot antenna with frequency of 433 MHz for microwave ablation therapies: design, simulation, and experimental research.
    Jiang Y; Zhao J; Li W; Yang Y; Liu J; Qian Z
    Med Biol Eng Comput; 2017 Nov; 55(11):2027-2036. PubMed ID: 28462497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of dual slot antenna using floating metallic sleeve for microwave ablation.
    Ibitoye ZA; Nwoye EO; Aweda MA; Oremosu AA; Annunobi CC; Akanmu ON
    Med Eng Phys; 2015 Apr; 37(4):384-91. PubMed ID: 25686672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modeling of microwave liver ablation with a variable-porosity medium approach.
    Tucci C; Trujillo M; Berjano E; Iasiello M; Andreozzi A; Vanoli GP
    Comput Methods Programs Biomed; 2022 Feb; 214():106569. PubMed ID: 34906785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical modeling of microwave ablation zone clinical margin variance.
    Deshazer G; Merck D; Hagmann M; Dupuy DE; Prakash P
    Med Phys; 2016 Apr; 43(4):1764. PubMed ID: 27036574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influences of blood flow parameters on temperature distribution during liver tumor microwave ablation.
    Wang J; Wu S; Wu Z; Gao H; Huang S
    Front Biosci (Landmark Ed); 2021 Sep; 26(9):504-516. PubMed ID: 34590463
    [No Abstract]   [Full Text] [Related]  

  • 12. Optimal Localization of a Novel Shifted 1T-Ring Based Microwave Ablation Probe in Hepatocellular Carcinoma.
    Ashour AS; Asran M; Mohamed WS; Fotiadis DI
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):505-514. PubMed ID: 32746045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-slot coaxial microwave antenna for liver tumor ablation.
    Ge M; Jiang H; Huang X; Zhou Y; Zhi D; Zhao G; Chen Y; Wang L; Qiu B
    Phys Med Biol; 2018 Sep; 63(17):175011. PubMed ID: 30102247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optimal sliding choke antenna for hepatic microwave ablation.
    Prakash P; Converse MC; Webster JG; Mahvi DM
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2470-6. PubMed ID: 19535312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model.
    Bertram JM; Yang D; Converse MC; Webster JG; Mahvi DM
    Biomed Eng Online; 2006 Feb; 5():15. PubMed ID: 16504153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel tumor localization model and prediction of ablation zone using an intertwined helical antenna for the treatment of hepatocellular carcinoma.
    Singh SK; Yadav AN
    Int J Numer Method Biomed Eng; 2023 Apr; 39(4):e3686. PubMed ID: 36690467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal Power for Microwave Slotted Probes in Ablating Different Hepatocellular Carcinoma Sizes.
    Ashour AS; Asran M; Fotiadis DI
    Comput Biol Med; 2020 Dec; 127():104101. PubMed ID: 33161335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of conventional and newer generation microwave ablation systems for hepatocellular carcinoma.
    Imajo K; Ogawa Y; Yoneda M; Saito S; Nakajima A
    J Med Ultrason (2001); 2020 Apr; 47(2):265-277. PubMed ID: 31960190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of high blood flow on heat distribution and ablation zone during microwave ablation-numerical approach.
    Boregowda G; Mariappan P
    Int J Numer Method Biomed Eng; 2024 May; ():e3835. PubMed ID: 38800993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.