These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 36385867)

  • 1. Review of Rare-Earth Phosphate Materials for Nuclear Waste Sequestration Applications.
    Rafiuddin MR; Donato G; McCaugherty S; Mesbah A; Grosvenor AP
    ACS Omega; 2022 Nov; 7(44):39482-39490. PubMed ID: 36385867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A one-step synthesis of rare-earth phosphate-borosilicate glass composites.
    Donato G; Holzscherer D; Beam JC; Grosvenor AP
    RSC Adv; 2018 Nov; 8(68):39053-39065. PubMed ID: 35558310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication, chemical and thermal stability studies of crystalline ceramic wasteform based on oxyapatite phosphate host LaSr
    Ravikumar R; Gopal B; Jena H
    J Hazard Mater; 2020 Jul; 394():122552. PubMed ID: 32240900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization.
    Orlova AI; Ojovan MI
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31430956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.
    Cramer AJ; Cole JM; FitzGerald V; Honkimaki V; Roberts MA; Brennan T; Martin RA; Saunders GA; Newport RJ
    Phys Chem Chem Phys; 2013 Jun; 15(22):8529-43. PubMed ID: 23518599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Special Issue: Materials for Nuclear Waste Immobilization.
    Hyatt NC; Ojovan MI
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31684168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Structural Investigation of Hydrous and Anhydrous Rare-Earth Phosphates.
    Rafiuddin MR; Grosvenor AP
    Inorg Chem; 2016 Oct; 55(19):9685-9695. PubMed ID: 27627108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development, characterization and dissolution behavior of calcium-aluminoborate glass wasteforms to immobilize rare-earth oxides.
    Kim M; Corkhill CL; Hyatt NC; Heo J
    Sci Rep; 2018 Mar; 8(1):5320. PubMed ID: 29593253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compositional Dependence of Solubility/Retention of Molybdenum Oxides in Aluminoborosilicate-Based Model Nuclear Waste Glasses.
    Brehault A; Patil D; Kamat H; Youngman RE; Thirion LM; Mauro JC; Corkhill CL; McCloy JS; Goel A
    J Phys Chem B; 2018 Feb; 122(5):1714-1729. PubMed ID: 29332394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of wasteform composing of phosphate and silicate to immobilize radioactive waste salts.
    Park HS; Cho IH; Eun HC; Kim IT; Cho YZ; Lee HS
    Environ Sci Technol; 2011 Mar; 45(5):1932-9. PubMed ID: 21288037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ceramics, Glass and Glass-Ceramics for Personal Radiation Detectors.
    Świontek S; Środa M; Gieszczyk W
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rare-Earth Orthophosphates From Atomistic Simulations.
    Ji Y; Kowalski PM; Kegler P; Huittinen N; Marks NA; Vinograd VL; Arinicheva Y; Neumeier S; Bosbach D
    Front Chem; 2019; 7():197. PubMed ID: 31001521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational materials science aided design of glass ceramics and crystal properties (abstract only).
    Mannstadt W
    J Phys Condens Matter; 2008 Feb; 20(6):064233. PubMed ID: 21693894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Statistical Methods in Predicting the Properties of Glass-Ceramic Materials Obtained from Inorganic Solid Waste.
    Zawada A; Przerada I; Lubas M; Sitarz M; Leśniak M
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34070197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of the Partitioning Ratio of Minor Actinide Surrogates between Zirconolite and Glass in Glass-Ceramic for Nuclear Waste Disposal.
    Liao CZ; Liu C; Su M; Shih K
    Inorg Chem; 2017 Aug; 56(16):9913-9921. PubMed ID: 28782955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable ceramic-polymer composites for biomedical applications: A review.
    Dziadek M; Stodolak-Zych E; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1175-1191. PubMed ID: 27987674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes.
    Aloisi M; Karamanov A; Taglieri G; Ferrante F; Pelino M
    J Hazard Mater; 2006 Sep; 137(1):138-43. PubMed ID: 16730889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and Characterization of Glass-Ceramic Foam from Clay-Rich Waste Diatomaceous Earth.
    Sedlačík M; Nguyen M; Opravil T; Sokolář R
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waste recycling of cathode ray tube glass through industrial production of transparent ceramic frits.
    Karaahmet O; Cicek B
    J Air Waste Manag Assoc; 2019 Oct; 69(10):1258-1266. PubMed ID: 31403377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.