These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36385882)

  • 1. Iodine and Carbonate Species Monitoring in Molten NaOH-KOH Eutectic Scrubber via Dual-Phase
    Medina AS; Felmy HM; Vitale-Sullivan ME; Lackey HE; Branch SD; Bryan SA; Lines AM
    ACS Omega; 2022 Nov; 7(44):40456-40465. PubMed ID: 36385882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Line Monitoring of Gas-Phase Molecular Iodine Using Raman and Fluorescence Spectroscopy Paired with Chemometric Analysis.
    Felmy HM; Clifford AJ; Medina AS; Cox RM; Wilson JM; Lines AM; Bryan SA
    Environ Sci Technol; 2021 Mar; 55(6):3898-3908. PubMed ID: 33411509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring Noble Gases (Xe and Kr) and Aerosols (Cs and Rb) in a Molten Salt Reactor Surrogate Off-Gas Stream Using Laser-Induced Breakdown Spectroscopy (LIBS).
    Andrews HB; McFarlane J; Myhre KG
    Appl Spectrosc; 2022 Aug; 76(8):988-997. PubMed ID: 35537200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly-efficient molten NaOH-KOH for organochlorine destruction: Performance and mechanism.
    Dai S; Liu L; He H; Yang B; Wu D; Zhao Y; Niu D
    Environ Res; 2023 Jan; 217():114815. PubMed ID: 36400224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring Xenon Capture in a Metal Organic Framework Using Laser-Induced Breakdown Spectroscopy.
    Andrews HB; Thallapally PK; Robinson AJ
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Calibration Approach for Monitoring Aerosol Hydrogen Isotopes Using Laser-Induced Breakdown Spectroscopy for Molten Salt Reactor Off-Gas Streams.
    Andrews HB; McFarlane J
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of fission and activation products in molten salt reactors and their potential impact on the radionuclide monitoring stations of the International Monitoring System.
    Johnson C; Slack JL; Sharma MK; Simpson CK; Burnett JL
    J Environ Radioact; 2021 Aug; 234():106625. PubMed ID: 33957486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible impacts of molten salt reactors on the International Monitoring System.
    Eslinger PW; Johnson CM; McIntyre JI; Simpson CK; Slack JL; Burnett JL
    J Environ Radioact; 2021 Aug; 234():106622. PubMed ID: 33965293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of iodide ions on the speciation of radiolytic transients in molten LiCl-KCl eutectic salt mixtures.
    Conrad JK; Iwamatsu K; Woods ME; Gakhar R; Layne B; Cook AR; Horne GP
    Phys Chem Chem Phys; 2023 Jun; 25(23):16009-16017. PubMed ID: 37272071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Off-Gassed Products From Molten Salts Using Laser-Induced Breakdown Spectroscopy.
    Diaz D; Hahn DW
    Appl Spectrosc; 2023 Sep; 77(9):1033-1043. PubMed ID: 37434427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of Lanthanides in a Molten Salt Reactor Surrogate Off-Gas Stream Using Laser-Induced Breakdown Spectroscopy.
    Andrews HB; Myhre KG
    Appl Spectrosc; 2022 Aug; 76(8):877-886. PubMed ID: 35323059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-Situ Analysis of Corrosion Products in Molten Salt: X-ray Absorption Reveals Both Ionic and Metallic Species.
    Fayfar S; Zheng G; Sprouster D; Marshall MSJ; Stavitski E; Leshchev D; Khaykovich B
    ACS Omega; 2023 Jul; 8(27):24673-24679. PubMed ID: 37457454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of H2S using molten carbonate at high temperature.
    Kawase M; Otaka M
    Waste Manag; 2013 Dec; 33(12):2706-12. PubMed ID: 24035726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collisions and reactions of gaseous propanol with molten NaOH/KOH.
    Castro DJ; Dragulin SM; Manning M; Nathanson GM
    J Chem Phys; 2006 Oct; 125(14):144715. PubMed ID: 17042639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation-induced reaction kinetics of Zn
    Iwamatsu K; Horne GP; Gakhar R; Halstenberg P; Layne B; Pimblott SM; Wishart JF
    Phys Chem Chem Phys; 2022 Oct; 24(41):25088-25098. PubMed ID: 35789354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a reactor for the in situ monitoring of 2D materials growth on liquid metal catalysts, using synchrotron x-ray scattering, Raman spectroscopy, and optical microscopy.
    Saedi M; de Voogd JM; Sjardin A; Manikas A; Galiotis C; Jankowski M; Renaud G; La Porta F; Konovalov O; van Baarle GJC; Groot IMN
    Rev Sci Instrum; 2020 Jan; 91(1):013907. PubMed ID: 32012586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the Quasi-Binary Phase Diagram FLiNaK-NdF
    Mushnikov P; Tkacheva O; Voronin V; Shishkin V; Zaikov Y
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactions of HCl and D2O with molten alkali carbonates.
    Krebs T; Nathanson GM
    J Phys Chem A; 2011 Feb; 115(4):482-9. PubMed ID: 21182318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman spectra from very concentrated aqueous NaOH and from wet and dry, solid, and anhydrous molten, LiOH, NaOH, and KOH.
    Walrafen GE; Douglas RT
    J Chem Phys; 2006 Mar; 124(11):114504. PubMed ID: 16555898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the performance of a turbulent wet scrubber for scrubbing particulate matter.
    Lee BK; Mohan BR; Byeon SH; Lim KS; Hong EP
    J Air Waste Manag Assoc; 2013 May; 63(5):499-506. PubMed ID: 23786141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.