BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36386154)

  • 41. Gli activation by the estrogen receptor in breast cancer cells: Regulation of cancer cell growth by Gli3.
    Massah S; Foo J; Li N; Truong S; Nouri M; Xie L; Prins GS; Buttyan R
    Mol Cell Endocrinol; 2021 Feb; 522():111136. PubMed ID: 33347954
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Targeted degradation of activating estrogen receptor α ligand-binding domain mutations in human breast cancer.
    Gonzalez TL; Hancock M; Sun S; Gersch CL; Larios JM; David W; Hu J; Hayes DF; Wang S; Rae JM
    Breast Cancer Res Treat; 2020 Apr; 180(3):611-622. PubMed ID: 32067153
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hyaluronan synthase 2 (HAS2) regulates cell phenotype and invadopodia formation in luminal-like breast cancer cells.
    Sheng Y; Cao M; Liu Y; He Y; Zhang G; Du Y; Gao F; Yang C
    Mol Cell Biochem; 2021 Sep; 476(9):3383-3391. PubMed ID: 33954907
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hyaluronic acid synthase 2 promotes malignant phenotypes of colorectal cancer cells through transforming growth factor beta signaling.
    Kim YH; Lee SB; Shim S; Kim A; Park JH; Jang WS; Lee SJ; Myung JK; Park S; Lee SJ; Kim MJ
    Cancer Sci; 2019 Jul; 110(7):2226-2236. PubMed ID: 31102316
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bortezomib blocks the catabolic process of autophagy via a cathepsin-dependent mechanism, affects endoplasmic reticulum stress and induces caspase-dependent cell death in antiestrogen-sensitive and resistant ER+ breast cancer cells.
    Periyasamy-Thandavan S; Jackson WH; Samaddar JS; Erickson B; Barrett JR; Raney L; Gopal E; Ganapathy V; Hill WD; Bhalla KN; Schoenlein PV
    Autophagy; 2010 Jan; 6(1):19-35. PubMed ID: 20110775
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of estrogen receptor DNA binding in untreated and acquired antiestrogen-resistant human breast tumors.
    Johnston SR; Lu B; Dowsett M; Liang X; Kaufmann M; Scott GK; Osborne CK; Benz CC
    Cancer Res; 1997 Sep; 57(17):3723-7. PubMed ID: 9288779
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Breast Cancer Resistance to Antiestrogens Is Enhanced by Increased ER Degradation and ERBB2 Expression.
    Shibata T; Watari K; Izumi H; Kawahara A; Hattori S; Fukumitsu C; Murakami Y; Takahashi R; Toh U; Ito KI; Ohdo S; Tanaka M; Kage M; Kuwano M; Ono M
    Cancer Res; 2017 Jan; 77(2):545-556. PubMed ID: 27879270
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Poly-ADP-Ribosylation of Estrogen Receptor-Alpha by PARP1 Mediates Antiestrogen Resistance in Human Breast Cancer Cells.
    Pulliam N; Tang J; Wang W; Fang F; Sood R; O'Hagan HM; Miller KD; Clarke R; Nephew KP
    Cancers (Basel); 2019 Jan; 11(1):. PubMed ID: 30621214
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wilms' tumor 1 suppressor gene mediates antiestrogen resistance via down-regulation of estrogen receptor-alpha expression in breast cancer cells.
    Han Y; Yang L; Suarez-Saiz F; San-Marina S; Cui J; Minden MD
    Mol Cancer Res; 2008 Aug; 6(8):1347-55. PubMed ID: 18708366
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Estrogen receptor-α signaling and localization regulates autophagy and unfolded protein response activation in ER+ breast cancer.
    Cook KL; Clarke R
    Receptors Clin Investig; 2014; 1(6):. PubMed ID: 26005699
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression of human estrogen receptor using an efficient adenoviral gene delivery system is able to restore hormone-dependent features to estrogen receptor-negative breast carcinoma cells.
    Lazennec G; Katzenellenbogen BS
    Mol Cell Endocrinol; 1999 Mar; 149(1-2):93-105. PubMed ID: 10375022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Role of Long Noncoding RNAs in Antiestrogen Resistance in Breast Cancer: An Overview and Update.
    Huang L; Liang G; Zhang Q; Zhao W
    J Breast Cancer; 2020 Apr; 23(2):129-140. PubMed ID: 32395373
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amplified Crosstalk Between Estrogen Binding and GFR Signaling Mediated Pathways of ER Activation Drives Responses in Tumors Treated with Endocrine Disruptors.
    Suba Z
    Recent Pat Anticancer Drug Discov; 2018; 13(4):428-444. PubMed ID: 30027855
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Resistance to different antiestrogens is caused by different multi-factorial changes and is associated with reduced expression of IGF receptor Ialpha.
    Brockdorff BL; Heiberg I; Lykkesfeldt AE
    Endocr Relat Cancer; 2003 Dec; 10(4):579-90. PubMed ID: 14713268
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NFκB signaling is important for growth of antiestrogen resistant breast cancer cells.
    Yde CW; Emdal KB; Guerra B; Lykkesfeldt AE
    Breast Cancer Res Treat; 2012 Aug; 135(1):67-78. PubMed ID: 22527100
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MCF7/LCC9: an antiestrogen-resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen.
    Brünner N; Boysen B; Jirus S; Skaar TC; Holst-Hansen C; Lippman J; Frandsen T; Spang-Thomsen M; Fuqua SA; Clarke R
    Cancer Res; 1997 Aug; 57(16):3486-93. PubMed ID: 9270017
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of a human breast cancer cell line, MCF-7/RU58R-1, resistant to the pure antiestrogen RU 58,668.
    Fog CK; Christensen IJ; Lykkesfeldt AE
    Breast Cancer Res Treat; 2005 May; 91(2):133-44. PubMed ID: 15868441
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The proteasome inhibitor Bortezomib (Velcade) as potential inhibitor of estrogen receptor-positive breast cancer.
    Thaler S; Thiede G; Hengstler JG; Schad A; Schmidt M; Sleeman JP
    Int J Cancer; 2015 Aug; 137(3):686-97. PubMed ID: 25530422
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antitumor and anticancer stem cell activities of eribulin mesylate and antiestrogens in breast cancer cells.
    Kurebayashi J; Kanomata N; Yamashita T; Shimo T; Moriya T
    Breast Cancer; 2016 May; 23(3):425-36. PubMed ID: 25552385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hyaluronan synthase 2 (HAS2) promotes breast cancer cell invasion by suppression of tissue metalloproteinase inhibitor 1 (TIMP-1).
    Bernert B; Porsch H; Heldin P
    J Biol Chem; 2011 Dec; 286(49):42349-42359. PubMed ID: 22016393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.