These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36386441)

  • 1. Structural and mutational studies suggest key residues to determine whether stomatin SPFH domains form dimers or trimers.
    Komatsu T; Matsui I; Yokoyama H
    Biochem Biophys Rep; 2022 Dec; 32():101384. PubMed ID: 36386441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the stomatin operon partner protein from Pyrococcus horikoshii indicates the formation of a multimeric assembly.
    Yokoyama H; Matsui I
    FEBS Open Bio; 2014; 4():804-12. PubMed ID: 25349784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ¹H, ¹³C, and ¹⁵N resonance assignment of the SPFH domain of human stomatin.
    Tsuruta T; Goda N; Umetsu Y; Iwaya N; Kuwahara Y; Hiroaki H
    Biomol NMR Assign; 2012 Apr; 6(1):23-5. PubMed ID: 21643969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lipid raft markers stomatin, prohibitin, flotillin, and HflK/C (SPFH)-domain proteins form an operon with NfeD proteins and function with apolar polyisoprenoid lipids.
    Yokoyama H; Matsui I
    Crit Rev Microbiol; 2020 Feb; 46(1):38-48. PubMed ID: 31983249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual thermal disassembly of the SPFH domain oligomer from Pyrococcus horikoshii.
    Kuwahara Y; Unzai S; Nagata T; Hiroaki Y; Yokoyama H; Matsui I; Ikegami T; Fujiyoshi Y; Hiroaki H
    Biophys J; 2009 Oct; 97(7):2034-43. PubMed ID: 19804735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cryptic phosphate-binding pocket on the SPFH domain of human stomatin that regulates a novel fibril-like self-assembly.
    Kataoka K; Suzuki S; Tenno T; Goda N; Hibino E; Oshima A; Hiroaki H
    Curr Res Struct Biol; 2022; 4():158-166. PubMed ID: 35663930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactive dimeric structure of the protease domain of stomatin operon partner protein.
    Yokoyama H; Suzuki K; Hara K; Matsui I; Hashimoto H
    Acta Crystallogr D Struct Biol; 2020 Jun; 76(Pt 6):515-520. PubMed ID: 32496213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a core domain of stomatin from Pyrococcus horikoshii Illustrates a novel trimeric and coiled-coil fold.
    Yokoyama H; Fujii S; Matsui I
    J Mol Biol; 2008 Feb; 376(3):868-78. PubMed ID: 18182167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Three-dimensional structure of membrane protein stomatin and function of stomatin-specific protease].
    Yokoyama H
    Yakugaku Zasshi; 2010 Oct; 130(10):1289-93. PubMed ID: 20930480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli SPFH Membrane Microdomain Proteins HflKC Contribute to Aminoglycoside and Oxidative Stress Tolerance.
    Wessel AK; Yoshii Y; Reder A; Boudjemaa R; Szczesna M; Betton JM; Bernal-Bayard J; Beloin C; Lopez D; Völker U; Ghigo JM
    Microbiol Spectr; 2023 Aug; 11(4):e0176723. PubMed ID: 37347165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function analysis of human stomatin: A mutation study.
    Rungaldier S; Umlauf E; Mairhofer M; Salzer U; Thiele C; Prohaska R
    PLoS One; 2017; 12(6):e0178646. PubMed ID: 28575093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular structure of a novel membrane protease specific for a stomatin homolog from the hyperthermophilic archaeon Pyrococcus horikoshii.
    Yokoyama H; Matsui E; Akiba T; Harata K; Matsui I
    J Mol Biol; 2006 May; 358(4):1152-64. PubMed ID: 16574150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the membrane microdomain organization by SPFH family proteins.
    Ma C; Wang C; Luo D; Yan L; Yang W; Li N; Gao N
    Cell Res; 2022 Feb; 32(2):176-189. PubMed ID: 34975153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SPFH Protein Superfamily in Fungi: Impact on Mitochondrial Function and Implications in Virulence.
    Heredia MY; Rauceo JM
    Microorganisms; 2021 Nov; 9(11):. PubMed ID: 34835412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher-order structure formation using refined monomer structures of lipid raft markers, Stomatin, Prohibitin, Flotillin, and HflK/C-related proteins.
    Yokoyama H; Matsui I
    FEBS Open Bio; 2023 May; 13(5):926-937. PubMed ID: 36932695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Stomatin, Prohibitin, Flotillin, and HflK/C-Domain Protein Required to Link the Phage-Shock Protein to the Membrane in
    Scholz AS; Baur SSM; Wolf D; Bramkamp M
    Front Microbiol; 2021; 12():754924. PubMed ID: 34777311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryo-EM structure of the SPFH-NfeD family protein complex QmcA-YbbJ.
    Tan KA; Qiao Z; Lim ZZE; Yeo JY; Yong Y; Do PH; Rya E; Gao YG
    Structure; 2024 Oct; 32(10):1603-1610.e3. PubMed ID: 39181124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffolding microdomains and beyond: the function of reggie/flotillin proteins.
    Langhorst MF; Reuter A; Stuermer CA
    Cell Mol Life Sci; 2005 Oct; 62(19-20):2228-40. PubMed ID: 16091845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel thermostable membrane protease forming an operon with a stomatin homolog from the hyperthermophilic archaebacterium Pyrococcus horikoshii.
    Yokoyama H; Matsui I
    J Biol Chem; 2005 Feb; 280(8):6588-94. PubMed ID: 15611110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the flotillin complex in a native membrane environment.
    Fu Z; MacKinnon R
    Proc Natl Acad Sci U S A; 2024 Jul; 121(29):e2409334121. PubMed ID: 38985763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.