BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36386630)

  • 1. The plasmid-encoded lactose operon plays a vital role in the acid production rate of
    Li X; Zhai Z; Hao Y; Zhang M; Hou C; He J; Shi S; Zhao Z; Sang Y; Ren F; Wang R
    Front Microbiol; 2022; 13():1016904. PubMed ID: 36386630
    [No Abstract]   [Full Text] [Related]  

  • 2. The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine.
    Bidart GN; Rodríguez-Díaz J; Pérez-Martínez G; Yebra MJ
    Sci Rep; 2018 May; 8(1):7152. PubMed ID: 29740087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential of species-specific tagatose-6-phosphate (T6P) pathway in Lactobacillus casei group for galactose reduction in fermented dairy foods.
    Wu Q; Shah NP
    Food Microbiol; 2017 Apr; 62():178-187. PubMed ID: 27889146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning and nucleotide sequence of the factor IIIlac gene of Lactobacillus casei.
    Alpert CA; Chassy BM
    Gene; 1988; 62(2):277-88. PubMed ID: 3130296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishing a model to study the regulation of the lactose operon in Lactobacillus casei.
    Gosalbes MJ; Monedero V; Alpert CA; Pérez-Martínez G
    FEMS Microbiol Lett; 1997 Mar; 148(1):83-9. PubMed ID: 9066115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG.
    Takala TM; Saris PE; Tynkkynen SS
    Appl Microbiol Biotechnol; 2003 Jan; 60(5):564-70. PubMed ID: 12536257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific point mutations in Lactobacillus casei ATCC 27139 cause a phenotype switch from Lac- to Lac+.
    Tsai YK; Chen HW; Lo TC; Lin TH
    Microbiology (Reading); 2009 Mar; 155(Pt 3):751-760. PubMed ID: 19246746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase.
    De Boeck R; Sarmiento-Rubiano LA; Nadal I; Monedero V; Pérez-Martínez G; Yebra MJ
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1915-22. PubMed ID: 19784641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of the plasmid-encoded lactose-PTS of Lactobacillus casei.
    Chassy BM; Alpert CA
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):157-65. PubMed ID: 2517398
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of alsD deletion and overexpression of nox and alsS on diacetyl and acetoin production by Lacticaseibacillus casei during milk fermentation.
    Tian H; Jing Y; Yu H; Huang J; Yuan H; Lou X; Wang B; Xu Z; Chen C
    J Dairy Sci; 2022 Apr; 105(4):2868-2879. PubMed ID: 35151477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon.
    Nissen L; Pérez-Martínez G; Yebra MJ
    FEMS Microbiol Lett; 2005 Aug; 249(1):177-83. PubMed ID: 16002237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of gal-lac operons in wild-type galactose-positive and -negative Streptococcus thermophilus by genomics and transcription analysis.
    Xiong ZQ; Kong LH; Meng HL; Cui JM; Xia YJ; Wang SJ; Ai LZ
    J Ind Microbiol Biotechnol; 2019 May; 46(5):751-758. PubMed ID: 30715626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete Genome Sequencing and Comparative Genomics of Three Potential Probiotic Strains,
    Kim E; Yang SM; Kim D; Kim HY
    Front Microbiol; 2021; 12():794315. PubMed ID: 35069490
    [No Abstract]   [Full Text] [Related]  

  • 15. In vivo effect of mutations in the antiterminator LacT in Lactobacillus casei.
    Gosalbes MAJ; Esteban CD; Pérez-Martı Nez G
    Microbiology (Reading); 2002 Mar; 148(Pt 3):695-702. PubMed ID: 11882703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered mRNA metabolism in ribonuclease III-deficient strains of Escherichia coli.
    Talkad V; Achord D; Kennell D
    J Bacteriol; 1978 Aug; 135(2):528-41. PubMed ID: 98520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose 6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans.
    Rosey EL; Stewart GC
    J Bacteriol; 1992 Oct; 174(19):6159-70. PubMed ID: 1400164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LacR is a repressor of lacABCD and LacT is an activator of lacTFEG, constituting the lac gene cluster in Streptococcus pneumoniae.
    Afzal M; Shafeeq S; Kuipers OP
    Appl Environ Microbiol; 2014 Sep; 80(17):5349-58. PubMed ID: 24951784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Prospective Beneficial Effects of Red Laser Exposure on
    Mohamed MSM; Elshaghabee FMF; Alharbi SA; El-Hussein A
    Biology (Basel); 2020 Aug; 9(9):. PubMed ID: 32878056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.