BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36386823)

  • 1. Pixel-level multimodal fusion deep networks for predicting subcellular organelle localization from label-free live-cell imaging.
    Wei Z; Liu X; Yan R; Sun G; Yu W; Liu Q; Guo Q
    Front Genet; 2022; 13():1002327. PubMed ID: 36386823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Parallel Fusion Network for Predicting Protein Subcellular Localization from Stimulated Raman Scattering (SRS) Microscopy Images in Living Cells.
    Wei Z; Liu W; Yu W; Liu X; Yan R; Liu Q; Guo Q
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating label correlations into deep neural networks to classify protein subcellular location patterns in immunohistochemistry images.
    Hu JX; Yang Y; Xu YY; Shen HB
    Proteins; 2022 Feb; 90(2):493-503. PubMed ID: 34546597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards more efficient ophthalmic disease classification and lesion location via convolution transformer.
    Wen H; Zhao J; Xiang S; Lin L; Liu C; Wang T; An L; Liang L; Huang B
    Comput Methods Programs Biomed; 2022 Jun; 220():106832. PubMed ID: 35525213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3DCNAS: A universal method for predicting the location of fluorescent organelles in living cells in three-dimensional space.
    Sun G; Liu S; Shi C; Liu X; Guo Q
    Exp Cell Res; 2023 Dec; 433(2):113807. PubMed ID: 37852350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Pixel Transformers for Virtual Staining of Microscopy Images.
    Liu Y; Yuan H; Wang Z; Ji S
    IEEE Trans Med Imaging; 2020 Jun; 39(6):2256-2266. PubMed ID: 31985413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-scale deep learning for the imbalanced multi-label protein subcellular localization prediction based on immunohistochemistry images.
    Wang F; Wei L
    Bioinformatics; 2022 Apr; 38(9):2602-2611. PubMed ID: 35212728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CT-based transformer model for non-invasively predicting the Fuhrman nuclear grade of clear cell renal cell carcinoma.
    Yang M; He X; Xu L; Liu M; Deng J; Cheng X; Wei Y; Li Q; Wan S; Zhang F; Wu L; Wang X; Song B; Liu M
    Front Oncol; 2022; 12():961779. PubMed ID: 36249050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing architectural order with quantitative label-free imaging and deep learning.
    Guo SM; Yeh LH; Folkesson J; Ivanov IE; Krishnan AP; Keefe MG; Hashemi E; Shin D; Chhun BB; Cho NH; Leonetti MD; Han MH; Nowakowski TJ; Mehta SB
    Elife; 2020 Jul; 9():. PubMed ID: 32716843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A faster, high resolution, mtPA-GFP-based mitochondrial fusion assay acquiring kinetic data of multiple cells in parallel using confocal microscopy.
    Lovy A; Molina AJ; Cerqueira FM; Trudeau K; Shirihai OS
    J Vis Exp; 2012 Jul; (65):e3991. PubMed ID: 22847388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial adaptive and transformer fusion network (STFNet) for low-count PET blind denoising with MRI.
    Zhang L; Xiao Z; Zhou C; Yuan J; He Q; Yang Y; Liu X; Liang D; Zheng H; Fan W; Zhang X; Hu Z
    Med Phys; 2022 Jan; 49(1):343-356. PubMed ID: 34796526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein subcellular localization based on deep image features and criterion learning strategy.
    Su R; He L; Liu T; Liu X; Wei L
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33320936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual organelle self-coding for fluorescence imaging via adversarial learning.
    Nguyen T; Bui V; Thai A; Lam V; Raub C; Chang LC; Nehmetallah G
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated processing of label-free Raman microscope images of macrophage cells with standardized regression for high-throughput analysis.
    Milewski RJ; Kumagai Y; Fujita K; Standley DM; Smith NI
    Immunome Res; 2010 Nov; 6():11. PubMed ID: 21092116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DULoc: quantitatively unmixing protein subcellular location patterns in immunofluorescence images based on deep learning features.
    Xue MQ; Zhu XL; Wang G; Xu YY
    Bioinformatics; 2022 Jan; 38(3):827-833. PubMed ID: 34694372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time noise reduction based on ground truth free deep learning for optical coherence tomography.
    Huang Y; Zhang N; Hao Q
    Biomed Opt Express; 2021 Apr; 12(4):2027-2040. PubMed ID: 33996214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-driven magnetic resonance imaging (MRI)-transrectal ultrasound (TRUS) registration using weakly supervised learning for MRI-guided prostate radiotherapy.
    Zeng Q; Fu Y; Tian Z; Lei Y; Zhang Y; Wang T; Mao H; Liu T; Curran WJ; Jani AB; Patel P; Yang X
    Phys Med Biol; 2020 Jun; 65(13):135002. PubMed ID: 32330922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of deep convolutional neural networks in classification of protein subcellular localization with microscopy images.
    Xiao M; Shen X; Pan W
    Genet Epidemiol; 2019 Apr; 43(3):330-341. PubMed ID: 30614068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating organelle correlations into semi-supervised learning for protein subcellular localization prediction.
    Xu YY; Yang F; Shen HB
    Bioinformatics; 2016 Jul; 32(14):2184-92. PubMed ID: 27153655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.