BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36386872)

  • 1. Protocol to image and quantify nucleocytoplasmic transport in cultured cells using fluorescent
    Cui H; Sepehrimanesh M; Coutee CA; Akter M; Hosain MA; Ding B
    STAR Protoc; 2022 Dec; 3(4):101813. PubMed ID: 36386872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol to detect RNAs from tissue sections in mice using Y-branched probe in situ hybridization.
    Wu Y; Yu CR
    STAR Protoc; 2022 Dec; 3(4):101686. PubMed ID: 36115025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting RNA-protein proximity at DNA double-strand breaks using combined fluorescence in situ hybridization with proximity ligation assay.
    Alagia A; Ketley RF; Gullerova M
    STAR Protoc; 2023 Mar; 4(1):102096. PubMed ID: 36825808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring mRNA export.
    Tokunaga K; Tani T
    Curr Protoc Cell Biol; 2008 Dec; Chapter 22():Unit 22.13. PubMed ID: 19085987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-throughput DNA FISH protocol to visualize genome regions in human cells.
    Finn EH; Misteli T
    STAR Protoc; 2021 Sep; 2(3):100741. PubMed ID: 34458868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A protocol for whole-mount immuno-coupled hybridization chain reaction (WICHCR) in zebrafish embryos and larvae.
    Ibarra-García-Padilla R; Howard AGA; Singleton EW; Uribe RA
    STAR Protoc; 2021 Sep; 2(3):100709. PubMed ID: 34401776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing the translational activation of a particular mRNA in zebrafish embryos using in situ hybridization and proximity ligation assay.
    Sato K; Kotani T
    STAR Protoc; 2024 Jun; 5(2):102951. PubMed ID: 38492224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. exo-FISH: Protocol for detecting DNA breaks in repetitive regions of mammalian genomes.
    Saayman X; Graham E; Leung CWB; Esashi F
    STAR Protoc; 2023 Sep; 4(3):102487. PubMed ID: 37549036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized protocol for single-molecule RNA FISH to visualize gene expression in
    Patel HP; Brouwer I; Lenstra TL
    STAR Protoc; 2021 Sep; 2(3):100647. PubMed ID: 34278333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FISH-Flow to quantify nascent and mature ribosomal RNA in mouse and human cells.
    Antony C; Somers P; Gray EM; Pimkin M; Paralkar VR
    STAR Protoc; 2023 Sep; 4(3):102463. PubMed ID: 37481729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A DNA-fiber protocol for single molecule analysis of telomere (SMAT) length and extension events in cancer cells.
    Lu R; Allen JAM; Galaviz P; Pickett HA
    STAR Protoc; 2022 Mar; 3(1):101212. PubMed ID: 35265860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using single-molecule fluorescence in situ hybridization and immunohistochemistry to count RNA molecules in single cells in zebrafish embryos.
    Keseroglu K; Zinani OQH; Özbudak EM
    STAR Protoc; 2023 Mar; 4(1):102020. PubMed ID: 36638016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient RNA and RNA-protein co-detection in 3D colonoids by whole-mount staining.
    Atanga R; Parra AS; In JG
    STAR Protoc; 2022 Dec; 3(4):101775. PubMed ID: 36313534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing mRNA nuclear export in mammalian cells by microinjection.
    Lee ES; Palazzo AF
    Methods; 2017 Aug; 126():76-85. PubMed ID: 28577934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of RNA transport in Xenopus oocytes and mammalian cells.
    Taniguchi I; McCloskey A; Ohno M
    Methods Cell Biol; 2014; 122():395-413. PubMed ID: 24857740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous detection of nuclear and cytoplasmic RNA variants utilizing Stellaris® RNA fluorescence in situ hybridization in adherent cells.
    Coassin SR; Orjalo AV; Semaan SJ; Johansson HE
    Methods Mol Biol; 2014; 1211():189-99. PubMed ID: 25218386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol for Single-Molecule Fluorescence
    Farack L; Itzkovitz S
    STAR Protoc; 2020 Jun; 1(1):100007. PubMed ID: 33111069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of mRNA nuclear export kinetics in mammalian cells by microinjection.
    Gueroussov S; Tarnawsky SP; Cui XA; Mahadevan K; Palazzo AF
    J Vis Exp; 2010 Dec; (46):. PubMed ID: 21178962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microinjection and Fluorescence In Situ Hybridization Assay for Studying mRNA Export in Mammalian Cells.
    Wang K; Shi M; Cheng H
    Methods Mol Biol; 2017; 1648():95-102. PubMed ID: 28766292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging of Telomerase RNA by Single-Molecule Inexpensive FISH Combined with Immunofluorescence.
    Querido E; Sfeir A; Chartrand P
    STAR Protoc; 2020 Sep; 1(2):100104. PubMed ID: 33111129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.