These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36386872)

  • 1. Protocol to image and quantify nucleocytoplasmic transport in cultured cells using fluorescent
    Cui H; Sepehrimanesh M; Coutee CA; Akter M; Hosain MA; Ding B
    STAR Protoc; 2022 Dec; 3(4):101813. PubMed ID: 36386872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol to detect RNAs from tissue sections in mice using Y-branched probe in situ hybridization.
    Wu Y; Yu CR
    STAR Protoc; 2022 Dec; 3(4):101686. PubMed ID: 36115025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting RNA-protein proximity at DNA double-strand breaks using combined fluorescence in situ hybridization with proximity ligation assay.
    Alagia A; Ketley RF; Gullerova M
    STAR Protoc; 2023 Mar; 4(1):102096. PubMed ID: 36825808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring mRNA export.
    Tokunaga K; Tani T
    Curr Protoc Cell Biol; 2008 Dec; Chapter 22():Unit 22.13. PubMed ID: 19085987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-throughput DNA FISH protocol to visualize genome regions in human cells.
    Finn EH; Misteli T
    STAR Protoc; 2021 Sep; 2(3):100741. PubMed ID: 34458868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A protocol for whole-mount immuno-coupled hybridization chain reaction (WICHCR) in zebrafish embryos and larvae.
    Ibarra-García-Padilla R; Howard AGA; Singleton EW; Uribe RA
    STAR Protoc; 2021 Sep; 2(3):100709. PubMed ID: 34401776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing the translational activation of a particular mRNA in zebrafish embryos using in situ hybridization and proximity ligation assay.
    Sato K; Kotani T
    STAR Protoc; 2024 Jun; 5(2):102951. PubMed ID: 38492224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. exo-FISH: Protocol for detecting DNA breaks in repetitive regions of mammalian genomes.
    Saayman X; Graham E; Leung CWB; Esashi F
    STAR Protoc; 2023 Sep; 4(3):102487. PubMed ID: 37549036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized protocol for single-molecule RNA FISH to visualize gene expression in
    Patel HP; Brouwer I; Lenstra TL
    STAR Protoc; 2021 Sep; 2(3):100647. PubMed ID: 34278333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FISH-Flow to quantify nascent and mature ribosomal RNA in mouse and human cells.
    Antony C; Somers P; Gray EM; Pimkin M; Paralkar VR
    STAR Protoc; 2023 Sep; 4(3):102463. PubMed ID: 37481729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A DNA-fiber protocol for single molecule analysis of telomere (SMAT) length and extension events in cancer cells.
    Lu R; Allen JAM; Galaviz P; Pickett HA
    STAR Protoc; 2022 Mar; 3(1):101212. PubMed ID: 35265860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol for comparing ribosomal levels in single bacterial cells at different growth stages using rRNA-FISH.
    Ciolli Mattioli C; Avraham R
    STAR Protoc; 2024 Sep; 5(3):103137. PubMed ID: 38878285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using single-molecule fluorescence in situ hybridization and immunohistochemistry to count RNA molecules in single cells in zebrafish embryos.
    Keseroglu K; Zinani OQH; Özbudak EM
    STAR Protoc; 2023 Mar; 4(1):102020. PubMed ID: 36638016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient RNA and RNA-protein co-detection in 3D colonoids by whole-mount staining.
    Atanga R; Parra AS; In JG
    STAR Protoc; 2022 Dec; 3(4):101775. PubMed ID: 36313534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing mRNA nuclear export in mammalian cells by microinjection.
    Lee ES; Palazzo AF
    Methods; 2017 Aug; 126():76-85. PubMed ID: 28577934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of RNA transport in Xenopus oocytes and mammalian cells.
    Taniguchi I; McCloskey A; Ohno M
    Methods Cell Biol; 2014; 122():395-413. PubMed ID: 24857740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous detection of nuclear and cytoplasmic RNA variants utilizing Stellaris® RNA fluorescence in situ hybridization in adherent cells.
    Coassin SR; Orjalo AV; Semaan SJ; Johansson HE
    Methods Mol Biol; 2014; 1211():189-99. PubMed ID: 25218386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol for Single-Molecule Fluorescence
    Farack L; Itzkovitz S
    STAR Protoc; 2020 Jun; 1(1):100007. PubMed ID: 33111069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of mRNA nuclear export kinetics in mammalian cells by microinjection.
    Gueroussov S; Tarnawsky SP; Cui XA; Mahadevan K; Palazzo AF
    J Vis Exp; 2010 Dec; (46):. PubMed ID: 21178962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microinjection and Fluorescence In Situ Hybridization Assay for Studying mRNA Export in Mammalian Cells.
    Wang K; Shi M; Cheng H
    Methods Mol Biol; 2017; 1648():95-102. PubMed ID: 28766292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.