These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 36387277)

  • 61. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data.
    Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Toward the Identifiability of Comparative Deep Generative Models.
    Lopez R; Huetter JC; Hajiramezanali E; Pritchard J; Regev A
    ArXiv; 2024 Jan; ():. PubMed ID: 38351930
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.
    Tong L; Wu H; Wang MD
    Methods; 2021 May; 189():74-85. PubMed ID: 32763377
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types.
    Wu W; Zhang W; Ma X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043143
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Omics data integration in computational biology viewed through the prism of machine learning paradigms.
    Fouché A; Zinovyev A
    Front Bioinform; 2023; 3():1191961. PubMed ID: 37600970
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Deep latent space fusion for adaptive representation of heterogeneous multi-omics data.
    Zhang C; Chen Y; Zeng T; Zhang C; Chen L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35079777
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.
    Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y
    Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Single-Cell Multi-Omics and Its Prospective Application in Cancer Biology.
    Peng A; Mao X; Zhong J; Fan S; Hu Y
    Proteomics; 2020 Jul; 20(13):e1900271. PubMed ID: 32223079
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Single-cell multi-omics sequencing and its applications in studying the nervous system.
    Wang C; Fan X
    Biophys Rep; 2022 Jun; 8(3):136-149. PubMed ID: 37288245
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data.
    Xu J; Wu P; Chen Y; Meng Q; Dawood H; Dawood H
    BMC Bioinformatics; 2019 Oct; 20(1):527. PubMed ID: 31660856
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding.
    Cao ZJ; Gao G
    Nat Biotechnol; 2022 Oct; 40(10):1458-1466. PubMed ID: 35501393
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data.
    Zuo C; Chen L
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33200787
    [TBL] [Abstract][Full Text] [Related]  

  • 73. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Single-Cell Omics Analyses Enabled by Microchip Technologies.
    Deng Y; Finck A; Fan R
    Annu Rev Biomed Eng; 2019 Jun; 21():365-393. PubMed ID: 30883211
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Multi-omics technology and its applications to life sciences: a review].
    Liu J; Li W; Wang L; Li J; Li E; Luo Y
    Sheng Wu Gong Cheng Xue Bao; 2022 Oct; 38(10):3581-3593. PubMed ID: 36305394
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Site effects how-to and when: An overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses.
    Bayer JMM; Thompson PM; Ching CRK; Liu M; Chen A; Panzenhagen AC; Jahanshad N; Marquand A; Schmaal L; Sämann PG
    Front Neurol; 2022; 13():923988. PubMed ID: 36388214
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multi-omics Data Integration Model Based on UMAP Embedding and Convolutional Neural Network.
    ElKarami B; Alkhateeb A; Qattous H; Alshomali L; Shahrrava B
    Cancer Inform; 2022; 21():11769351221124205. PubMed ID: 36187912
    [TBL] [Abstract][Full Text] [Related]  

  • 78. DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis.
    Zhao L; Dong Q; Luo C; Wu Y; Bu D; Qi X; Luo Y; Zhao Y
    Comput Struct Biotechnol J; 2021; 19():2719-2725. PubMed ID: 34093987
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Alzheimer's disease in the omics era.
    Sancesario GM; Bernardini S
    Clin Biochem; 2018 Sep; 59():9-16. PubMed ID: 29920246
    [TBL] [Abstract][Full Text] [Related]  

  • 80. JDSNMF: Joint Deep Semi-Non-Negative Matrix Factorization for Learning Integrative Representation of Molecular Signals in Alzheimer's Disease.
    Moon S; Lee H
    J Pers Med; 2021 Jul; 11(8):. PubMed ID: 34442330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.