These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 36387856)

  • 1. Light-induced synchronization of the SCN coupled oscillators and implications for entraining the HPA axis.
    Li Y; Androulakis IP
    Front Endocrinol (Lausanne); 2022; 13():960351. PubMed ID: 36387856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SCN-HPA-Periphery Circadian Timing System: Mathematical Modeling of Clock Synchronization and the Effects of Photoperiod on Jetlag Adaptation.
    Li Y; Androulakis IP
    J Biol Rhythms; 2023 Dec; 38(6):601-616. PubMed ID: 37529986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light entrainment of the SCN circadian clock and implications for personalized alterations of corticosterone rhythms in shift work and jet lag.
    Li Y; Androulakis IP
    Sci Rep; 2021 Sep; 11(1):17929. PubMed ID: 34504149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modeling of the synergistic role of GCN2 and the HPA axis in regulating the integrated stress response in the central circadian timing system.
    Li Y; Lu L; Levy JL; Anthony TG; Androulakis IP
    Physiol Genomics; 2024 Aug; 56(8):531-543. PubMed ID: 38881429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network.
    Ramkisoensing A; Gu C; van Engeldorp Gastelaars HM; Michel S; Deboer T; Rohling JH; Meijer JH
    J Biol Rhythms; 2014 Feb; 29(1):4-15. PubMed ID: 24492878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the Influence of Seasonal Differences in the HPA Axis on Synchronization of the Circadian Clock and Cell Cycle.
    Pierre K; Rao RT; Hartmanshenn C; Androulakis IP
    Endocrinology; 2018 Apr; 159(4):1808-1826. PubMed ID: 29444258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diurnal expression of functional and clock-related genes throughout the rat HPA axis: system-wide shifts in response to a restricted feeding schedule.
    Girotti M; Weinberg MS; Spencer RL
    Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E888-97. PubMed ID: 19190255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Hepato-Hypothalamic-Pituitary-Adrenal-Renal Axis: Mathematical Modeling of Cortisol's Production, Metabolism, and Seasonal Variation.
    Pierre K; Schlesinger N; Androulakis IP
    J Biol Rhythms; 2017 Oct; 32(5):469-484. PubMed ID: 28946788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Study of Dual Circadian Oscillator Models under Different Skeleton Photoperiods.
    Flôres DEFL; Oda GA
    J Biol Rhythms; 2020 Jun; 35(3):302-316. PubMed ID: 32013693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization.
    vanderLeest HT; Rohling JH; Michel S; Meijer JH
    PLoS One; 2009; 4(3):e4976. PubMed ID: 19305510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for Weakened Intercellular Coupling in the Mammalian Circadian Clock under Long Photoperiod.
    Buijink MR; Almog A; Wit CB; Roethler O; Olde Engberink AH; Meijer JH; Garlaschelli D; Rohling JH; Michel S
    PLoS One; 2016; 11(12):e0168954. PubMed ID: 28006027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mechanisms of structural plasticity associated with photic synchronization of the circadian clock within the suprachiasmatic nucleus].
    Bosler O; Girardet C; Sage-Ciocca D; Jacomy H; François-Bellan AM; Becquet D
    J Soc Biol; 2009; 203(1):49-63. PubMed ID: 19358811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced Plasticity in Coupling Strength in the Aging SCN Clock as Revealed by Kuramoto Modeling.
    van Beurden AW; Meylahn JM; Achterhof S; Buijink R; Olde Engberink A; Michel S; Meijer JH; Rohling JHT
    J Biol Rhythms; 2023 Oct; 38(5):461-475. PubMed ID: 37329153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Physiological and Pharmacological Significance of the Circadian Timing of the HPA Axis: A Mathematical Modeling Approach.
    Li Y; Lu L; Androulakis IP
    J Pharm Sci; 2024 Jan; 113(1):33-46. PubMed ID: 37597751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods.
    Ikeda Y; Sasaki H; Ohtsu T; Shiraishi T; Tahara Y; Shibata S
    Chronobiol Int; 2015 Mar; 32(2):195-210. PubMed ID: 25286135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network rewiring and plasticity promotes synchronization of suprachiasmatic nucleus neurons.
    Zhou J; Wang H; Ouyang Q
    Chaos; 2022 Feb; 32(2):023101. PubMed ID: 35232040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The synchronization of neuronal oscillators determined by the directed network structure of the suprachiasmatic nucleus under different photoperiods.
    Gu C; Tang M; Yang H
    Sci Rep; 2016 Jun; 6():28878. PubMed ID: 27358024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Food anticipatory circadian rhythms in mice entrained to long or short day photoperiods.
    Power SC; Mistlberger RE
    Physiol Behav; 2020 Aug; 222():112939. PubMed ID: 32407832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of network architecture on synchronization and entrainment properties of the circadian oscillations in the suprachiasmatic nucleus.
    Hafner M; Koeppl H; Gonze D
    PLoS Comput Biol; 2012; 8(3):e1002419. PubMed ID: 22423219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.