BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 36387917)

  • 1. Dynamic evolution of transient receptor potential vanilloid (TRPV) ion channel family with numerous gene duplications and losses.
    Morini M; Bergqvist CA; Asturiano JF; Larhammar D; Dufour S
    Front Endocrinol (Lausanne); 2022; 13():1013868. PubMed ID: 36387917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Evolution of Oxytocin and Vasotocin Receptor Genes in Jawed Vertebrates: A Clear Case for Gene Duplications Through Ancestral Whole-Genome Duplications.
    Ocampo Daza D; Bergqvist CA; Larhammar D
    Front Endocrinol (Lausanne); 2021; 12():792644. PubMed ID: 35185783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications.
    Lagman D; Ocampo Daza D; Widmark J; Abalo XM; Sundström G; Larhammar D
    BMC Evol Biol; 2013 Nov; 13():238. PubMed ID: 24180662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates.
    Singh PP; Isambert H
    Nucleic Acids Res; 2020 Jan; 48(D1):D724-D730. PubMed ID: 31612943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ancient multiplicity in cyclic nucleotide-gated (CNG) cation channel repertoire was reduced in the ancestor of Olfactores before re-expansion by whole genome duplications in vertebrates.
    Lagman D; Haines HJ; Abalo XM; Larhammar D
    PLoS One; 2022; 17(12):e0279548. PubMed ID: 36584110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Insights Into the Evolutionary History of Melatonin Receptors in Vertebrates, With Particular Focus on Teleosts.
    Maugars G; Nourizadeh-Lillabadi R; Weltzien FA
    Front Endocrinol (Lausanne); 2020; 11():538196. PubMed ID: 33071966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates.
    Brunet FG; Volff JN; Schartl M
    Genome Biol Evol; 2016 Jun; 8(5):1600-13. PubMed ID: 27260203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Insights Into the Evolution of Corticotropin-Releasing Hormone Family With a Special Focus on Teleosts.
    Maugars G; Mauvois X; Martin P; Aroua S; Rousseau K; Dufour S
    Front Endocrinol (Lausanne); 2022; 13():937218. PubMed ID: 35937826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication.
    Sato Y; Hashiguchi Y; Nishida M
    BMC Evol Biol; 2009 Jun; 9():127. PubMed ID: 19500364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of thermoTRP ion channel homologs in vertebrates.
    Saito S; Shingai R
    Physiol Genomics; 2006 Nov; 27(3):219-30. PubMed ID: 16926268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of the Carbohydrate 6-O Sulfotransferase Gene Family Evolution in Vertebrates Reveals Novel Member, CHST16, Lost in Amniotes.
    Ocampo Daza D; Haitina T
    Genome Biol Evol; 2020 Jul; 12(7):993-1012. PubMed ID: 32652010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of the Coexistence of Duplicated LH Receptors in Teleosts, and Their Origin in Ancestral Actinopterygians.
    Maugars G; Dufour S
    PLoS One; 2015; 10(8):e0135184. PubMed ID: 26271038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct functions of two olfactory marker protein genes derived from teleost-specific whole genome duplication.
    Suzuki H; Nikaido M; Hagino-Yamagishi K; Okada N
    BMC Evol Biol; 2015 Nov; 15():245. PubMed ID: 26555542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein kinase C family evolution in jawed vertebrates.
    Garcia-Concejo A; Larhammar D
    Dev Biol; 2021 Nov; 479():77-90. PubMed ID: 34329618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the growth hormone, prolactin, prolactin 2 and somatolactin family.
    Ocampo Daza D; Larhammar D
    Gen Comp Endocrinol; 2018 Aug; 264():94-112. PubMed ID: 29339183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family.
    Gillis WQ; St John J; Bowerman B; Schneider SQ
    BMC Evol Biol; 2009 Aug; 9():207. PubMed ID: 19695090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of vertebrate nicotinic acetylcholine receptors.
    Pedersen JE; Bergqvist CA; Larhammar D
    BMC Evol Biol; 2019 Jan; 19(1):38. PubMed ID: 30700248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting the evolution of the somatostatin family: Already five genes in the gnathostome ancestor.
    Tostivint H; Gaillard AL; Mazan S; Pézeron G
    Gen Comp Endocrinol; 2019 Aug; 279():139-147. PubMed ID: 30836103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticotropin-releasing hormone family evolution: five ancestral genes remain in some lineages.
    Cardoso JC; Bergqvist CA; Félix RC; Larhammar D
    J Mol Endocrinol; 2016 Jul; 57(1):73-86. PubMed ID: 27220618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions.
    Larsson TA; Olsson F; Sundstrom G; Lundin LG; Brenner S; Venkatesh B; Larhammar D
    BMC Evol Biol; 2008 Jun; 8():184. PubMed ID: 18578868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.