These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36388449)
1. On fault-mode phenomenon in no-insulation superconducting magnets: A preventive approach. Dong F; Park D; Lee W; Hao L; Huang Z; Bascuñán J; Jin Z; Iwasa Y Appl Phys Lett; 2022 Nov; 121(19):194101. PubMed ID: 36388449 [TBL] [Abstract][Full Text] [Related]
2. A surface-shunting method for the prevention of a fault-mode-induced quench in high-field no-insulation REBCO magnets. Dong F; Park D; Kim J; Bascuñán J; Iwasa Y Supercond Sci Technol; 2024 Nov; 37(11):. PubMed ID: 39430005 [TBL] [Abstract][Full Text] [Related]
3. Sudden-Discharging Quench Dynamics in a No-Insulation Superconducting Coil. Dong F; Park D; Kim J; Bascuñán J; Iwasa Y IEEE Trans Appl Supercond; 2023 Aug; 33(5):. PubMed ID: 36816464 [TBL] [Abstract][Full Text] [Related]
4. Analyses of Transient Behaviors of No-Insulation REBCO Pancake Coils During Sudden Discharging and Overcurrent. Wang T; Noguchi S; Wang X; Arakawa I; Minami K; Monma K; Ishiyama A; Hahn S; Iwasa Y IEEE Trans Appl Supercond; 2015 Jun; 25(3):. PubMed ID: 32952377 [TBL] [Abstract][Full Text] [Related]
5. Self-Protection Characteristic Comparison between No-Insulation, Metal-as-Insulation, and Surface-Shunted-Metal-as-Insulation REBCO coils. Kim J; Park D; Dong F; Lanzrath A; Lee W; Bascuñán J; Iwasa Y IEEE Trans Appl Supercond; 2023 Aug; 33(5):. PubMed ID: 38046815 [TBL] [Abstract][Full Text] [Related]
6. Hot-Spot Modeling of REBCO NI Pancake Coil: Analytical and Experimental Approaches. Lee W; Park D; Choi Y; Li Y; Bascuñán J; Iwasa Y IEEE Trans Appl Supercond; 2021 Aug; 31(5):. PubMed ID: 34012222 [TBL] [Abstract][Full Text] [Related]
7. Construction and test result of an all-REBCO conduction-cooled 23.5 T magnet prototype towards a benchtop 1 GHz NMR spectroscopy. Lee W; Park D; Bascuñán J; Iwasa Y Supercond Sci Technol; 2022 Aug; 35(10):. PubMed ID: 36120501 [TBL] [Abstract][Full Text] [Related]
8. A Cryogen-Free 25-T REBCO Magnet with the Extreme-No-Insulation Winding Technique. Park D; Lee W; Bascuñán J; Kim HM; Iwasa Y IEEE Trans Appl Supercond; 2022 Sep; 32(6):. PubMed ID: 36185339 [TBL] [Abstract][Full Text] [Related]
9. No-Insulation (NI) Winding Technique for Premature-Quench-Free NbTi MRI Magnets. Hahn S; Park DK; Kim K; Bascuñán J; Iwasa Y IEEE Trans Appl Supercond; 2012 Jun; 22(3):. PubMed ID: 31866731 [TBL] [Abstract][Full Text] [Related]
10. No-Insulation (NI) HTS Inserts for > 1 GHz LTS/HTS NMR Magnets. Hahn S; Park DK; Voccio J; Bascuñán J; Iwasa Y IEEE Trans Appl Supercond; 2012 Jun; 22(3):. PubMed ID: 31080326 [TBL] [Abstract][Full Text] [Related]
11. First-Cut Design of a Benchtop Cryogen-Free 23.5-T/25-mm Magnet for 1-GHz Microcoil NMR. Park D; Dong F; Lee W; Bascuñán J; Iwasa Y IEEE Trans Appl Supercond; 2023 Aug; 33(5):. PubMed ID: 37789845 [TBL] [Abstract][Full Text] [Related]
12. Assembly and Test of a 3-Nested-Coil 800-MHz REBCO Insert (H800) for the MIT 1.3 GHz LTS/HTS NMR Magnet. Michael PC; Park D; Choi YH; Lee J; Li Y; Bascuñán J; Noguchi S; Hahn S; Iwasa Y IEEE Trans Appl Supercond; 2019 Aug; 29(5):. PubMed ID: 31130801 [TBL] [Abstract][Full Text] [Related]
13. Design, construction, and operation of a 2 T 240 mm conduction-cooled defect-irrelevant winding (RE) Ba Bong U; Choi K; Kim J; Bang J; Lee JT; Im C; Park J; Yoon J; Kim G; Ku H; Kang W; Hahn S Rev Sci Instrum; 2022 Jul; 93(7):073302. PubMed ID: 35922323 [TBL] [Abstract][Full Text] [Related]
14. Review of progress and challenges of key mechanical issues in high-field superconducting magnets. Zhou YH; Park D; Iwasa Y Natl Sci Rev; 2023 Mar; 10(3):nwad001. PubMed ID: 37007748 [TBL] [Abstract][Full Text] [Related]
15. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university. Choi YH; Song JB; Yang DG; Kim YG; Hahn S; Lee HG Rev Sci Instrum; 2016 Oct; 87(10):104704. PubMed ID: 27802736 [TBL] [Abstract][Full Text] [Related]
17. Quench Analyses of the MIT 1.3-GHz LTS/HTS NMR Magnet. Noguchi S; Park D; Choi Y; Lee J; Li Y; Michael PC; Bascuñán J; Hahn S; Iwasa Y IEEE Trans Appl Supercond; 2019 Aug; 29(5):. PubMed ID: 31178650 [TBL] [Abstract][Full Text] [Related]
18. Discharge Behaviour and Modelling of a 1.5T REBCO Magnet With Quench Tolerant Coils Impregnated with Conductive Epoxy. Bouloukakis K; Hunter M; Long N; Dykstra R; Parkinson B IEEE Trans Appl Supercond; 2021 Aug; 31(5):. PubMed ID: 33994762 [TBL] [Abstract][Full Text] [Related]
19. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Hahn S; Kim K; Kim K; Hu X; Painter T; Dixon I; Kim S; Bhattarai KR; Noguchi S; Jaroszynski J; Larbalestier DC Nature; 2019 Jun; 570(7762):496-499. PubMed ID: 31189951 [TBL] [Abstract][Full Text] [Related]
20. HTS Pancake Coils Without Turn-to-Turn Insulation. Hahn S; Park DK; Bascuñán J; Iwasa Y IEEE Trans Appl Supercond; 2011 Jun; 21(3):. PubMed ID: 32952372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]