These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36388551)

  • 41. Identification, Mapping, and Molecular Marker Development for
    Chen Q; Song J; Du WP; Xu LY; Jiang Y; Zhang J; Xiang XL; Yu GR
    Front Plant Sci; 2017; 8():1355. PubMed ID: 28824686
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genomics and Pathways Involved in Maize Resistance to
    Cao A; de la Fuente M; Gesteiro N; Santiago R; Malvar RA; Butrón A
    Front Plant Sci; 2022; 13():866478. PubMed ID: 35586219
    [No Abstract]   [Full Text] [Related]  

  • 43. Maize kernel metabolome involved in resistance to fusarium ear rot and fumonisin contamination.
    Cao A; Gesteiro N; Santiago R; Malvar RA; Butrón A
    Front Plant Sci; 2023; 14():1160092. PubMed ID: 37538055
    [No Abstract]   [Full Text] [Related]  

  • 44. Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize.
    Han S; Utz HF; Liu W; Schrag TA; Stange M; Würschum T; Miedaner T; Bauer E; Schön CC; Melchinger AE
    Theor Appl Genet; 2016 Feb; 129(2):431-44. PubMed ID: 26660464
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-wide association study and pathway analysis to decipher loci associated with Fusarium ear rot resistance in tropical maize germplasm.
    Ayesiga SB; Rubaihayo P; Oloka BM; Dramadri IO; Sserumaga JP
    Genet Resour Crop Evol; 2024; 71(6):2435-2448. PubMed ID: 39026943
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Population parameters for resistance to Fusarium graminearum and Fusarium verticillioides ear rot among large sets of early, mid-late and late maturing European maize (Zea mays L.) inbred lines.
    Löffler M; Kessel B; Ouzunova M; Miedaner T
    Theor Appl Genet; 2010 Mar; 120(5):1053-62. PubMed ID: 20035317
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comprehensive meta-analysis of QTL and gene expression studies identify candidate genes associated with
    Baisakh N; Da Silva EA; Pradhan AK; Rajasekaran K
    Front Plant Sci; 2023; 14():1214907. PubMed ID: 37534296
    [TBL] [Abstract][Full Text] [Related]  

  • 48. QTL consistency and meta-analysis for grain yield components in three generations in maize.
    Li JZ; Zhang ZW; Li YL; Wang QL; Zhou YG
    Theor Appl Genet; 2011 Mar; 122(4):771-82. PubMed ID: 21063866
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of
    Feng X; Xiong H; Zheng D; Xin X; Zhang X; Wang Q; Wu F; Xu J; Lu Y
    Front Plant Sci; 2022; 13():942397. PubMed ID: 35909731
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.).
    Wang Y; Xu J; Deng D; Ding H; Bian Y; Yin Z; Wu Y; Zhou B; Zhao Y
    Planta; 2016 Feb; 243(2):459-71. PubMed ID: 26474992
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Maize (Zea mays L.) genetic factors for preventing fumonisin contamination.
    Butrón A; Santiago R; Mansilla P; Pintos-Varela C; Ordas A; Malvar RA
    J Agric Food Chem; 2006 Aug; 54(16):6113-7. PubMed ID: 16881725
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Whole-genome mining of abiotic stress gene loci in rice.
    Yang L; Lei L; Liu H; Wang J; Zheng H; Zou D
    Planta; 2020 Oct; 252(5):85. PubMed ID: 33052473
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding.
    Zhang X; Shabala S; Koutoulis A; Shabala L; Zhou M
    Planta; 2017 Feb; 245(2):283-295. PubMed ID: 27730410
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Meta-QTL analysis and candidate genes for quality traits, mineral content, and abiotic-related traits in wild emmer.
    Cabas-Lühmann P; Schwember AR; Arriagada O; Marcotuli I; Matus I; Alfaro C; Gadaleta A
    Front Plant Sci; 2024; 15():1305196. PubMed ID: 38550292
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combination of meta-analysis of QTL and GWAS to uncover the genetic architecture of seed yield and seed yield components in common bean.
    Izquierdo P; Kelly JD; Beebe SE; Cichy K
    Plant Genome; 2023 Jun; 16(2):e20328. PubMed ID: 37082832
    [TBL] [Abstract][Full Text] [Related]  

  • 56. QTL Mapping of Fusarium Ear Rot Resistance in Maize.
    Wen J; Shen Y; Xing Y; Wang Z; Han S; Li S; Yang C; Hao D; Zhang Y
    Plant Dis; 2021 Mar; 105(3):558-565. PubMed ID: 32870108
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Genome-Wide Association Study To Understand the Effect of
    Stagnati L; Rahjoo V; Samayoa LF; Holland JB; Borrelli VMG; Busconi M; Lanubile A; Marocco A
    G3 (Bethesda); 2020 May; 10(5):1685-1696. PubMed ID: 32156690
    [No Abstract]   [Full Text] [Related]  

  • 58. Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping.
    Zhang C; Zhou Z; Yong H; Zhang X; Hao Z; Zhang F; Li M; Zhang D; Li X; Wang Z; Weng J
    Theor Appl Genet; 2017 May; 130(5):1011-1029. PubMed ID: 28215025
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unravelling consensus genomic regions conferring leaf rust resistance in wheat via meta-QTL analysis.
    Amo A; Soriano JM
    Plant Genome; 2022 Mar; 15(1):e20185. PubMed ID: 34918873
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo.
    Shala-Mayrhofer V; Varga E; Marjakaj R; Berthiller F; Musolli A; Berisha D; Kelmendi B; Lemmens M
    Food Addit Contam Part B Surveill; 2013; 6(4):237-43. PubMed ID: 24779930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.