These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36388553)

  • 1. Transcriptome and metabolome analyses provide insights into the relevance of pericarp thickness variations in
    Li Y; Liao B; Wang Y; Luo H; Wang S; Li C; Song W; Zhang K; Yang B; Lu S; Zhang B; Li Y
    Front Plant Sci; 2022; 13():1016475. PubMed ID: 36388553
    [No Abstract]   [Full Text] [Related]  

  • 2. Integrated Transcriptome and Metabolome Analysis Reveals Key Metabolites Involved in
    Yang C; Wu P; Yao X; Sheng Y; Zhang C; Lin P; Wang K
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008957
    [No Abstract]   [Full Text] [Related]  

  • 3. Genetic relationships and low diversity among the tea-oil
    Qi H; Sun X; Yan W; Ye H; Chen J; Yu J; Jun D; Wang C; Xia T; Chen X; Li D; Zheng D
    Front Plant Sci; 2022; 13():996731. PubMed ID: 36247558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Camellia oleifera transcriptome reveals key pathways and hub genes involved during different photoperiods.
    Yan J; He J; Li J; Ren S; Wang Y; Zhou J; Tan X
    BMC Plant Biol; 2022 Sep; 22(1):435. PubMed ID: 36089577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-Length Transcriptome from
    Gong W; Song Q; Ji K; Gong S; Wang L; Chen L; Zhang J; Yuan D
    J Agric Food Chem; 2020 Dec; 68(49):14670-14683. PubMed ID: 33249832
    [No Abstract]   [Full Text] [Related]  

  • 6. TMT-Based Quantitative Proteomic Analysis Reveals the Crucial Biological Pathways Involved in Self-Incompatibility Responses in
    He Y; Song Q; Wu Y; Ye S; Chen S; Chen H
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183315
    [No Abstract]   [Full Text] [Related]  

  • 7. In-depth Understanding of
    Zhou J; Lu M; Yu S; Liu Y; Yang J; Tan X
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32111089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolomic Study of Flavonoids in
    Wang Y; Cheng J; Wei S; Jiang W; Li Y; Guo W; Dai W; Liao B
    Plants (Basel); 2023 Mar; 12(7):. PubMed ID: 37050058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition.
    Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285
    [No Abstract]   [Full Text] [Related]  

  • 10. Gene coexpression analysis reveals key pathways and hub genes related to late-acting self-incompatibility in
    Li C; Long Y; Lu M; Zhou J; Wang S; Xu Y; Tan X
    Front Plant Sci; 2022; 13():1065872. PubMed ID: 36762174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CcBLH6, a bell-like homeodomain-containing transcription factor, regulates the fruit lignification pattern.
    Yan C; Hu Z; Nie Z; Li J; Yao X; Yin H
    Planta; 2021 Apr; 253(5):90. PubMed ID: 33818691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree (
    Wu B; Ruan C; Shah AH; Li D; Li H; Ding J; Li J; Du W
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera.
    Zhang F; Li Z; Zhou J; Gu Y; Tan X
    BMC Plant Biol; 2021 Jul; 21(1):348. PubMed ID: 34301189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary transcriptome and proteome profiling in the mature seeds of Camellia oleifera from Hainan Island.
    Ye Z; Wu Y; Ul Haq Muhammad Z; Yan W; Yu J; Zhang J; Yao G; Hu X
    PLoS One; 2020; 15(2):e0226888. PubMed ID: 32027663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sugar Metabolism and Transcriptome Analysis Reveal Key Sugar Transporters during
    He Y; Chen R; Yang Y; Liang G; Zhang H; Deng X; Xi R
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055010
    [No Abstract]   [Full Text] [Related]  

  • 16. The regulation of cell wall lignification and lignin biosynthesis during pigmentation of winter jujube.
    Zhang Q; Wang L; Wang Z; Zhang R; Liu P; Liu M; Liu Z; Zhao Z; Wang L; Chen X; Xu H
    Hortic Res; 2021 Nov; 8(1):238. PubMed ID: 34719675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo transcriptome assembly of the cotyledon of Camellia oleifera for discovery of genes regulating seed germination.
    Long W; Yao X; Wang K; Sheng Y; Lv L
    BMC Plant Biol; 2022 May; 22(1):265. PubMed ID: 35643426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptomic analysis of high- and low-oil
    Wu B; Ruan C; Han P; Ruan D; Xiong C; Ding J; Liu S
    3 Biotech; 2019 Jul; 9(7):257. PubMed ID: 31192082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes.
    Dong B; Wu B; Hong W; Li X; Li Z; Xue L; Huang Y
    PLoS One; 2017; 12(7):e0181835. PubMed ID: 28759610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global Transcriptome and Correlation Analysis Reveal Cultivar-Specific Molecular Signatures Associated with Fruit Development and Fatty Acid Determination in
    Peng S; Lu J; Zhang Z; Ma L; Liu C; Chen Y
    Int J Genomics; 2020; 2020():6162802. PubMed ID: 32953873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.