These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36388579)
1. Exposure to strong irradiance exacerbates photoinhibition and suppresses N resorption during leaf senescence in shade-grown seedlings of fullmoon maple ( Kitao M; Yazaki K; Tobita H; Agathokleous E; Kishimoto J; Takabayashi A; Tanaka R Front Plant Sci; 2022; 13():1006413. PubMed ID: 36388579 [TBL] [Abstract][Full Text] [Related]
2. Anthocyanins act as a sugar-buffer and an alternative electron sink in response to starch depletion during leaf senescence: a case study on a typical anthocyanic tree species, Acer japonicum. Kitao M; Yazaki K; Tobita H; Agathokleous E; Kishimoto J; Takabayashi A; Tanaka R J Exp Bot; 2024 Jun; 75(11):3521-3541. PubMed ID: 38469677 [TBL] [Abstract][Full Text] [Related]
3. Tradeoff between shade adaptation and mitigation of photoinhibition in leaves of Quercus mongolica and Acer mono acclimated to deep shade. Kitao M; Lei TT; Koike T; Tobita H; Maruyama Y Tree Physiol; 2006 Apr; 26(4):441-8. PubMed ID: 16414923 [TBL] [Abstract][Full Text] [Related]
4. Acclimation of shade-developed leaves on saplings exposed to late-season canopy gaps. Naidu SL; DeLucia EH Tree Physiol; 1997 Jun; 17(6):367-76. PubMed ID: 14759845 [TBL] [Abstract][Full Text] [Related]
5. Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L.: I. In situ net photosynthesis, dark respiration and growth. Tjoelker MG; Volin JC; Oleksyn J; Reich PB New Phytol; 1993 Aug; 124(4):627-636. PubMed ID: 33874428 [TBL] [Abstract][Full Text] [Related]
6. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content. Anderson R; Ryser P Plants (Basel); 2015 Aug; 4(3):505-22. PubMed ID: 27135339 [TBL] [Abstract][Full Text] [Related]
7. Red pigments in autumn leaves of Norway maple do not offer significant photoprotection but coincide with stress symptoms. Mattila H; Tyystjärvi E Tree Physiol; 2023 May; 43(5):751-768. PubMed ID: 36715646 [TBL] [Abstract][Full Text] [Related]
8. Anatomical adjustment of mature leaves of sycamore maple (Acer pseudoplatanus L.) to increased irradiance. Wyka TP; Robakowski P; Żytkowiak R; Oleksyn J Photosynth Res; 2022 Apr; 152(1):55-71. PubMed ID: 35034267 [TBL] [Abstract][Full Text] [Related]
9. Anatomical acclimation of mature leaves to increased irradiance in sycamore maple (Acer pseudoplatanus L.). Wyka TP; Robakowski P; Żytkowiak R; Oleksyn J Photosynth Res; 2022 Oct; 154(1):41-55. PubMed ID: 36057003 [TBL] [Abstract][Full Text] [Related]
10. Leaf morphological and physiological adjustments to the spectrally selective shade imposed by anthocyanins in Prunus cerasifera. Kyparissis A; Grammatikopoulos G; Manetas Y Tree Physiol; 2007 Jun; 27(6):849-57. PubMed ID: 17331903 [TBL] [Abstract][Full Text] [Related]
11. Photosynthetic responses to light in seedlings of selected Amazonian and Australian rainforest tree species. Langenheim JH; Osmond CB; Brooks A; Ferrar PJ Oecologia; 1984 Aug; 63(2):215-224. PubMed ID: 28311016 [TBL] [Abstract][Full Text] [Related]
12. Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees. Rosati A; Esparza G; DeJong TM; Pearcy RW Tree Physiol; 1999 Mar; 19(3):173-180. PubMed ID: 12651580 [TBL] [Abstract][Full Text] [Related]
13. Shade, leaf growth and crown development of Quercus rubra, Quercus velutina, Prunus serotina and Acer rubrum seedlings. Gottschalk KW Tree Physiol; 1994; 14(7_9):735-749. PubMed ID: 14967644 [TBL] [Abstract][Full Text] [Related]
14. Canopy nitrogen distribution is optimized to prevent photoinhibition throughout the canopy during sun flecks. Kitao M; Kitaoka S; Harayama H; Tobita H; Agathokleous E; Utsugi H Sci Rep; 2018 Jan; 8(1):503. PubMed ID: 29323155 [TBL] [Abstract][Full Text] [Related]
15. Responses of leaf morphology, NSCs contents and C:N:P stoichiometry of Cunninghamia lanceolata and Schima superba to shading. Liu Q; Huang Z; Wang Z; Chen Y; Wen Z; Liu B; Tigabu M BMC Plant Biol; 2020 Jul; 20(1):354. PubMed ID: 32727357 [TBL] [Abstract][Full Text] [Related]
16. Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen. Kubiske ME; Zak DR; Pregitzer KS; Takeuchi Y Tree Physiol; 2002 Apr; 22(5):321-9. PubMed ID: 11960756 [TBL] [Abstract][Full Text] [Related]
17. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding. Mielke MS; Schaffer B Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194 [TBL] [Abstract][Full Text] [Related]
18. Photosynthetic costs and benefits of abaxial versus adaxial anthocyanins in Colocasia esculenta 'Mojito'. Hughes NM; Carpenter KL; Keidel TS; Miller CN; Waters MN; Smith WK Planta; 2014 Nov; 240(5):971-81. PubMed ID: 24903360 [TBL] [Abstract][Full Text] [Related]
19. Leaves of Japanese oak (Quercus mongolica var. crispula) mitigate photoinhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient. Kitao M; Kitaoka S; Komatsu M; Utsugi H; Tobita H; Koike T; Maruyama Y Physiol Plant; 2012 Oct; 146(2):192-204. PubMed ID: 22394101 [TBL] [Abstract][Full Text] [Related]
20. Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L.: II. Diagnostic gas exchange and leaf chemistry. Volin JC; Tjoelker MG; Oleksyn J; Reich PB New Phytol; 1993 Aug; 124(4):637-646. PubMed ID: 33874429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]