BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36388994)

  • 21. Natural variation involving deletion alleles of FRIGIDA modulate temperature-sensitive flowering responses in Arabidopsis thaliana.
    Sanchez-Bermejo E; Balasubramanian S
    Plant Cell Environ; 2016 Jun; 39(6):1353-65. PubMed ID: 26662639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasticity of rosette size in response to nitrogen availability is controlled by an RCC1-family protein.
    Duarte GT; Pandey PK; Vaid N; Alseekh S; Fernie AR; Nikoloski Z; Laitinen RAE
    Plant Cell Environ; 2021 Oct; 44(10):3398-3411. PubMed ID: 34228823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of flower size.
    Krizek BA; Anderson JT
    J Exp Bot; 2013 Apr; 64(6):1427-37. PubMed ID: 23404902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural selection on traits and trait plasticity in Arabidopsis thaliana varies across competitive environments.
    Palacio-Lopez K; King CM; Bloomberg J; Hovick SM
    Sci Rep; 2020 Dec; 10(1):21632. PubMed ID: 33303799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genes underlying quantitative variation in ecologically important traits: PIF4 (phytochrome interacting factor 4) is associated with variation in internode length, flowering time, and fruit set in Arabidopsis thaliana.
    Brock MT; Maloof JN; Weinig C
    Mol Ecol; 2010 Mar; 19(6):1187-99. PubMed ID: 20456226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ (13)C), and WUE plasticity to drought in Arabidopsis thaliana.
    Kenney AM; McKay JK; Richards JH; Juenger TE
    Ecol Evol; 2014 Dec; 4(23):4505-21. PubMed ID: 25512847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: evidence for modular genetic architecture.
    Juenger T; Pérez-Pérez JM; Bernal S; Micol JL
    Evol Dev; 2005; 7(3):259-71. PubMed ID: 15876198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The genetic basis and adult reproductive consequences of developmental thermal plasticity.
    Rodrigues LR; Zwoinska MK; Wiberg RAW; Snook RR
    J Anim Ecol; 2022 Jun; 91(6):1119-1134. PubMed ID: 35060127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ontogenetic phenotypic plasticity during the reproductive phase in Arabidopsis thaliana (Brassicaceae).
    Pigliucci M
    Am J Bot; 1997 Jul; 84(7):887. PubMed ID: 21708642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae).
    Anderson JT; Gezon ZJ
    Glob Chang Biol; 2015 Apr; 21(4):1689-703. PubMed ID: 25470363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of phenotypic and transcriptomic plasticity in alpine adaptation of Arabidopsis arenosa.
    Wos G; Požárová D; Kolář F
    Mol Ecol; 2023 Nov; 32(21):5771-5784. PubMed ID: 37728172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background.
    Méndez-Vigo B; Martínez-Zapater JM; Alonso-Blanco C
    PLoS Genet; 2013; 9(1):e1003289. PubMed ID: 23382706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FT-like NFT1 gene may play a role in flower transition induced by heat accumulation in Narcissus tazetta var. chinensis.
    Li XF; Jia LY; Xu J; Deng XJ; Wang Y; Zhang W; Zhang XP; Fang Q; Zhang DM; Sun Y; Xu L
    Plant Cell Physiol; 2013 Feb; 54(2):270-81. PubMed ID: 23303875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural variation in temperature-modulated immunity uncovers transcription factor bHLH059 as a thermoresponsive regulator in Arabidopsis thaliana.
    Bruessow F; Bautor J; Hoffmann G; Yildiz I; Zeier J; Parker JE
    PLoS Genet; 2021 Jan; 17(1):e1009290. PubMed ID: 33493201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flowering time QTL in natural populations of Arabidopsis thaliana and implications for their adaptive value.
    Dittmar EL; Oakley CG; Ågren J; Schemske DW
    Mol Ecol; 2014 Sep; 23(17):4291-303. PubMed ID: 25039363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small reductions in corolla size and pollen: ovule ratio, but no changes in flower shape in selfing populations of the North American Arabidopsis lyrata.
    Carleial S; van Kleunen M; Stift M
    Oecologia; 2017 Feb; 183(2):401-413. PubMed ID: 27866292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Climate as a driver of adaptive variations in ecological strategies in Arabidopsis thaliana.
    Vasseur F; Sartori K; Baron E; Fort F; Kazakou E; Segrestin J; Garnier E; Vile D; Violle C
    Ann Bot; 2018 Nov; 122(6):935-945. PubMed ID: 30256896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana.
    Ibañez C; Poeschl Y; Peterson T; Bellstädt J; Denk K; Gogol-Döring A; Quint M; Delker C
    BMC Plant Biol; 2017 Jul; 17(1):114. PubMed ID: 28683779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Do floral traits and the selfing capacity of Mimulus guttatus plastically respond to experimental temperature changes?
    Razanajatovo M; Fischer L; van Kleunen M
    Oecologia; 2020 Jan; 192(1):261-272. PubMed ID: 31760481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reproductive assurance weakens pollinator-mediated selection on flower size in an annual mixed-mating species.
    Teixido AL; Aizen MA
    Ann Bot; 2019 Jun; 123(6):1067-1077. PubMed ID: 30778517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.