These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36389242)

  • 1. Extended liquid state machines for speech recognition.
    Deckers L; Tsang IJ; Van Leekwijck W; Latré S
    Front Neurosci; 2022; 16():1023470. PubMed ID: 36389242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Digital Liquid State Machine With Biologically Inspired Learning and Its Application to Speech Recognition.
    Zhang Y; Li P; Jin Y; Choe Y
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2635-49. PubMed ID: 25643415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Liquid State Machines With Neural Plasticity for Video Activity Recognition.
    Soures N; Kudithipudi D
    Front Neurosci; 2019; 13():686. PubMed ID: 31333404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Liquid Ensembles for Enhancing the Performance and Accuracy of Liquid State Machines.
    Wijesinghe P; Srinivasan G; Panda P; Roy K
    Front Neurosci; 2019; 13():504. PubMed ID: 31191219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of synaptic connectivity on liquid state machine performance.
    Ju H; Xu JX; Chong E; VanDongen AM
    Neural Netw; 2013 Feb; 38():39-51. PubMed ID: 23232121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SpiLinC: Spiking Liquid-Ensemble Computing for Unsupervised Speech and Image Recognition.
    Srinivasan G; Panda P; Roy K
    Front Neurosci; 2018; 12():524. PubMed ID: 30190670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-learning synaptic delays, weights and adaptation in spiking neural networks.
    Deckers L; Van Damme L; Van Leekwijck W; Tsang IJ; Latré S
    Front Neurosci; 2024; 18():1360300. PubMed ID: 38680445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid State Machine on SpiNNaker for Spatio-Temporal Classification Tasks.
    Patiño-Saucedo A; Rostro-González H; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2022; 16():819063. PubMed ID: 35360182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive structure evolution and biologically plausible synaptic plasticity for recurrent spiking neural networks.
    Pan W; Zhao F; Zeng Y; Han B
    Sci Rep; 2023 Oct; 13(1):16924. PubMed ID: 37805632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal Coding in Spiking Neural Networks With Alpha Synaptic Function: Learning With Backpropagation.
    Comsa IM; Potempa K; Versari L; Fischbacher T; Gesmundo A; Alakuijala J
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5939-5952. PubMed ID: 33900924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid state machine with dendritically enhanced readout for low-power, neuromorphic VLSI implementations.
    Roy S; Banerjee A; Basu A
    IEEE Trans Biomed Circuits Syst; 2014 Oct; 8(5):681-95. PubMed ID: 25361513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks.
    Yu C; Du Y; Chen M; Wang A; Wang G; Li E
    Front Neurosci; 2022; 16():945037. PubMed ID: 36203801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.
    Srinivasa N; Cho Y
    Front Comput Neurosci; 2014; 8():159. PubMed ID: 25566045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-Inspired Evolutionary Model of Spiking Neural Networks in Ionic Liquid Space.
    Iranmehr E; Shouraki SB; Faraji MM; Bagheri N; Linares-Barranco B
    Front Neurosci; 2019; 13():1085. PubMed ID: 31787863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement Learning With Low-Complexity Liquid State Machines.
    Ponghiran W; Srinivasan G; Roy K
    Front Neurosci; 2019; 13():883. PubMed ID: 31507361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Deep Spiking Neural Networks Utilizing Gated Schottky Diode as Synaptic Devices.
    Lee ST; Bae JH
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.
    Kulkarni SR; Rajendran B
    Neural Netw; 2018 Jul; 103():118-127. PubMed ID: 29674234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learnable axonal delay in spiking neural networks improves spoken word recognition.
    Sun P; Chua Y; Devos P; Botteldooren D
    Front Neurosci; 2023; 17():1275944. PubMed ID: 38027508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.