These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36394253)

  • 1. htseq-clip: a toolset for the preprocessing of eCLIP/iCLIP datasets.
    Sahadevan S; Sekaran T; Ashaf N; Fritz M; Hentze MW; Huber W; Schwarzl T
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36394253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Pipeline for Analyzing eCLIP and iCLIP Data with Htseq-clip and DEWSeq.
    Sahadevan S; Sekaran T; Schwarzl T
    Methods Mol Biol; 2022; 2404():189-205. PubMed ID: 34694610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. racoon_clip-a complete pipeline for single-nucleotide analyses of iCLIP and eCLIP data.
    Klostermann M; Zarnack K
    Bioinform Adv; 2024; 4(1):vbae084. PubMed ID: 38948010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysing high-throughput sequencing data in Python with HTSeq 2.0.
    Putri GH; Anders S; Pyl PT; Pimanda JE; Zanini F
    Bioinformatics; 2022 May; 38(10):2943-2945. PubMed ID: 35561197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HTSeq--a Python framework to work with high-throughput sequencing data.
    Anders S; Pyl PT; Huber W
    Bioinformatics; 2015 Jan; 31(2):166-9. PubMed ID: 25260700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PyHMMER: a Python library binding to HMMER for efficient sequence analysis.
    Larralde M; Zeller G
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37074928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PureCLIP: capturing target-specific protein-RNA interaction footprints from single-nucleotide CLIP-seq data.
    Krakau S; Richard H; Marsico A
    Genome Biol; 2017 Dec; 18(1):240. PubMed ID: 29284540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP).
    Van Nostrand EL; Pratt GA; Shishkin AA; Gelboin-Burkhart C; Fang MY; Sundararaman B; Blue SM; Nguyen TB; Surka C; Elkins K; Stanton R; Rigo F; Guttman M; Yeo GW
    Nat Methods; 2016 Jun; 13(6):508-14. PubMed ID: 27018577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved discovery of RNA-binding protein binding sites in eCLIP data using DEWSeq.
    Schwarzl T; Sahadevan S; Lang B; Miladi M; Backofen R; Huber W; Hentze MW; Tartaglia GG
    Nucleic Acids Res; 2024 Jan; 52(1):e1. PubMed ID: 37962298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the design and interpretation of iCLIP experiments.
    Haberman N; Huppertz I; Attig J; König J; Wang Z; Hauer C; Hentze MW; Kulozik AE; Le Hir H; Curk T; Sibley CR; Zarnack K; Ule J
    Genome Biol; 2017 Jan; 18(1):7. PubMed ID: 28093074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SEQing: web-based visualization of iCLIP and RNA-seq data in an interactive python framework.
    Lewinski M; Bramkamp Y; Köster T; Staiger D
    BMC Bioinformatics; 2020 Mar; 21(1):113. PubMed ID: 32183735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain Predictability toolbox: a Python library for neuroimaging-based machine learning.
    Hahn S; Yuan K; Thompson WK; Owens M; Allgaier N; Garavan H
    Bioinformatics; 2021 Jul; 37(11):1637-1638. PubMed ID: 33216147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. oggmap: a Python package to extract gene ages per orthogroup and link them with single-cell RNA data.
    Ullrich KK; Glytnasi NE
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37952198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metadensity: a background-aware python pipeline for summarizing CLIP signals on various transcriptomic sites.
    Her HL; Boyle E; Yeo GW
    Bioinform Adv; 2022; 2(1):vbac083. PubMed ID: 36388152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed transcriptome discovery of RNA-binding protein binding sites by antibody-barcode eCLIP.
    Lorenz DA; Her HL; Shen KA; Rothamel K; Hutt KR; Nojadera AC; Bruns SC; Manakov SA; Yee BA; Chapman KB; Yeo GW
    Nat Methods; 2023 Jan; 20(1):65-69. PubMed ID: 36550273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome-wide Identification of RNA-binding Protein Binding Sites Using Photoactivatable-Ribonucleoside-Enhanced Crosslinking Immunoprecipitation (PAR-CLIP).
    Maatz H; Kolinski M; Hubner N; Landthaler M
    Curr Protoc Mol Biol; 2017 Apr; 118():27.6.1-27.6.19. PubMed ID: 28369676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins.
    Van Nostrand EL; Pratt GA; Yee BA; Wheeler EC; Blue SM; Mueller J; Park SS; Garcia KE; Gelboin-Burkhart C; Nguyen TB; Rabano I; Stanton R; Sundararaman B; Wang R; Fu XD; Graveley BR; Yeo GW
    Genome Biol; 2020 Apr; 21(1):90. PubMed ID: 32252787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scbean: a python library for single-cell multi-omics data analysis.
    Zhang H; Wang Y; Lian B; Wang Y; Li X; Wang T; Shang X; Yang H; Aziz A; Hu J
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38290765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PyDESeq2: a python package for bulk RNA-seq differential expression analysis.
    Muzellec B; Teleńczuk M; Cabeli V; Andreux M
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37669147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scFates: a scalable python package for advanced pseudotime and bifurcation analysis from single-cell data.
    Faure L; Soldatov R; Kharchenko PV; Adameyko I
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36394263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.