These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36394348)
1. Chemical Upcycling of Conventional Polyureas into Dynamic Covalent Poly(aminoketoenamide)s. Ma Y; Jiang X; Yin J; Weder C; Berrocal JA; Shi Z Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202212870. PubMed ID: 36394348 [TBL] [Abstract][Full Text] [Related]
2. Functional Upcycling of Polyurethane Thermosets into Value-Added Thermoplastics via Small-Molecule Carbamate-Assisted Decross-Linking Extrusion. Nettles JA; Alfarhan S; Pascoe CA; Westover C; Madsen MD; Sintas JI; Subbiah A; Long TE; Jin K JACS Au; 2024 Aug; 4(8):3058-3069. PubMed ID: 39211581 [TBL] [Abstract][Full Text] [Related]
3. Catalytic methods for chemical recycling or upcycling of commercial polymers. Kosloski-Oh SC; Wood ZA; Manjarrez Y; de Los Rios JP; Fieser ME Mater Horiz; 2021 Apr; 8(4):1084-1129. PubMed ID: 34821907 [TBL] [Abstract][Full Text] [Related]
4. Reprocessable and Recyclable Chain-Growth Polymer Networks Based on Dynamic Hindered Urea Bonds. Bin Rusayyis MA; Torkelson JM ACS Macro Lett; 2022 Apr; 11(4):568-574. PubMed ID: 35575326 [TBL] [Abstract][Full Text] [Related]
5. Dynamic urea bond for the design of reversible and self-healing polymers. Ying H; Zhang Y; Cheng J Nat Commun; 2014; 5():3218. PubMed ID: 24492620 [TBL] [Abstract][Full Text] [Related]
6. Dynamic covalent polymers enabled by reversible isocyanate chemistry. Liu W; Yang S; Huang L; Xu J; Zhao N Chem Commun (Camb); 2022 Nov; 58(89):12399-12417. PubMed ID: 36278770 [TBL] [Abstract][Full Text] [Related]
7. "Functional upcycling" of polymer waste towards the design of new materials. Guselnikova O; Semyonov O; Sviridova E; Gulyaev R; Gorbunova A; Kogolev D; Trelin A; Yamauchi Y; Boukherroub R; Postnikov P Chem Soc Rev; 2023 Jul; 52(14):4755-4832. PubMed ID: 37403690 [TBL] [Abstract][Full Text] [Related]
8. Dynamic multiphase semi-crystalline polymers based on thermally reversible pyrazole-urea bonds. Liu WX; Yang Z; Qiao Z; Zhang L; Zhao N; Luo S; Xu J Nat Commun; 2019 Oct; 10(1):4753. PubMed ID: 31628332 [TBL] [Abstract][Full Text] [Related]
10. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future. Chen H; Wan K; Zhang Y; Wang Y ChemSusChem; 2021 Oct; 14(19):4123-4136. PubMed ID: 33998153 [TBL] [Abstract][Full Text] [Related]
11. Versatile Chemical Recycling Strategies: Value-Added Chemicals from Polyester and Polycarbonate Waste. Payne JM; Kamran M; Davidson MG; Jones MD ChemSusChem; 2022 Apr; 15(8):e202200255. PubMed ID: 35114081 [TBL] [Abstract][Full Text] [Related]
12. Upcycling of thermosetting polymers into high-value materials. Wang B; Wang Y; Du S; Zhu J; Ma S Mater Horiz; 2023 Jan; 10(1):41-51. PubMed ID: 36342017 [TBL] [Abstract][Full Text] [Related]
13. Self-Healable Covalently Adaptable Networks Based on Disulfide Exchange. Guo X; Liu F; Lv M; Chen F; Gao F; Xiong Z; Chen X; Shen L; Lin F; Gao X Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235901 [TBL] [Abstract][Full Text] [Related]
14. C-H Functionalization of Polyolefins to Access Reprocessable Polyolefin Thermosets. Neidhart EK; Hua M; Peng Z; Kearney LT; Bhat V; Vashahi F; Alexanian EJ; Sheiko SS; Wang C; Helms BA; Leibfarth FA J Am Chem Soc; 2023 Dec; 145(50):27450-27458. PubMed ID: 38079611 [TBL] [Abstract][Full Text] [Related]
15. From Lignins to Renewable Aromatic Vitrimers based on Vinylogous Urethane. Sougrati L; Duval A; Avérous L ChemSusChem; 2023 Dec; 16(23):e202300792. PubMed ID: 37486785 [TBL] [Abstract][Full Text] [Related]
16. Water-Enabled Room-Temperature Self-Healing and Recyclable Polyurea Materials with Super-Strong Strength, Toughness, and Large Stretchability. Shi Z; Kang J; Zhang L ACS Appl Mater Interfaces; 2020 May; 12(20):23484-23493. PubMed ID: 32343136 [TBL] [Abstract][Full Text] [Related]