These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36394374)

  • 21. ZmCTLP1 is required for the maintenance of lipid homeostasis and the basal endosperm transfer layer in maize kernels.
    Hu M; Zhao H; Yang B; Yang S; Liu H; Tian H; Shui G; Chen Z; E L; Lai J; Song W
    New Phytol; 2021 Dec; 232(6):2384-2399. PubMed ID: 34559890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined GWAS and QTL analysis for dissecting the genetic architecture of kernel test weight in maize.
    Zhang X; Guan Z; Wang L; Fu J; Zhang Y; Li Z; Ma L; Liu P; Zhang Y; Liu M; Li P; Zou C; He Y; Lin H; Yuan G; Gao S; Pan G; Shen Y
    Mol Genet Genomics; 2020 Mar; 295(2):409-420. PubMed ID: 31807910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.).
    Gu R; Chen F; Liu B; Wang X; Liu J; Li P; Pan Q; Pace J; Soomro AA; Lübberstedt T; Mi G; Yuan L
    Theor Appl Genet; 2015 Sep; 128(9):1777-89. PubMed ID: 26058362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zinc deficiency tolerance in maize is associated with the up-regulation of Zn transporter genes and antioxidant activities.
    Khatun MA; Hossain MM; Bari MA; Abdullahil KM; Parvez MS; Alam MF; Kabir AH
    Plant Biol (Stuttg); 2018 Jul; 20(4):765-770. PubMed ID: 29718561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize.
    Li S; Zhou X; Huang Y; Zhu L; Zhang S; Zhao Y; Guo J; Chen J; Chen R
    BMC Plant Biol; 2013 Aug; 13():114. PubMed ID: 23924433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined linkage mapping and association analysis reveals genetic control of maize kernel moisture content.
    Zhang Y; Hu Y; Guan Z; Liu P; He Y; Zou C; Li P; Gao S; Peng H; Yang C; Pan G; Shen Y; Ma L
    Physiol Plant; 2020 Dec; 170(4):508-518. PubMed ID: 32754968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm.
    Qi X; Li S; Zhu Y; Zhao Q; Zhu D; Yu J
    Plant Mol Biol; 2017 Jan; 93(1-2):7-20. PubMed ID: 27709320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A nitrate transporter encoded by ZmNPF7.9 is essential for maize seed development.
    Wei YM; Ren ZJ; Wang BH; Zhang L; Zhao YJ; Wu JW; Li LG; Zhang XS; Zhao XY
    Plant Sci; 2021 Jul; 308():110901. PubMed ID: 34034862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constitutive expression of the ZmZIP7 in Arabidopsis alters metal homeostasis and increases Fe and Zn content.
    Li S; Zhou X; Zhao Y; Li H; Liu Y; Zhu L; Guo J; Huang Y; Yang W; Fan Y; Chen J; Chen R
    Plant Physiol Biochem; 2016 Sep; 106():1-10. PubMed ID: 27135812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discrimination of Maize Haploid Seeds from Hybrid Seeds Using Vis Spectroscopy and Support Vector Machine Method.
    Liu J; Guo TT; Li HC; Jia SQ; Yan YL; An D; Zhang Y; Chen SJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3268-74. PubMed ID: 26978947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic-based dissection of arsenic accumulation in maize using a genome-wide association analysis method.
    Zhao Z; Zhang H; Fu Z; Chen H; Lin Y; Yan P; Li W; Xie H; Guo Z; Zhang X; Tang J
    Plant Biotechnol J; 2018 May; 16(5):1085-1093. PubMed ID: 29055111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels.
    Li H; Peng Z; Yang X; Wang W; Fu J; Wang J; Han Y; Chai Y; Guo T; Yang N; Liu J; Warburton ML; Cheng Y; Hao X; Zhang P; Zhao J; Liu Y; Wang G; Li J; Yan J
    Nat Genet; 2013 Jan; 45(1):43-50. PubMed ID: 23242369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding.
    Velu G; Singh RP; Crespo-Herrera L; Juliana P; Dreisigacker S; Valluru R; Stangoulis J; Sohu VS; Mavi GS; Mishra VK; Balasubramaniam A; Chatrath R; Gupta V; Singh GP; Joshi AK
    Sci Rep; 2018 Sep; 8(1):13526. PubMed ID: 30201978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport.
    Sosso D; Luo D; Li QB; Sasse J; Yang J; Gendrot G; Suzuki M; Koch KE; McCarty DR; Chourey PS; Rogowsky PM; Ross-Ibarra J; Yang B; Frommer WB
    Nat Genet; 2015 Dec; 47(12):1489-93. PubMed ID: 26523777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ZmDRR206 Regulates Nutrient Accumulation in Endosperm through Its Role in Cell Wall Biogenesis during Maize Kernel Development.
    Li Y; Li D; E L; Yang J; Liu W; Xu M; Ye J
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving zinc accumulation in cereal endosperm using HvMTP1, a transition metal transporter.
    Menguer PK; Vincent T; Miller AJ; Brown JKM; Vincze E; Borg S; Holm PB; Sanders D; Podar D
    Plant Biotechnol J; 2018 Jan; 16(1):63-71. PubMed ID: 28436146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ analyses of inorganic nutrient distribution in sweetcorn and maize kernels using synchrotron-based X-ray fluorescence microscopy.
    Cheah ZX; Kopittke PM; Harper SM; O'Hare TJ; Wang P; Paterson DJ; de Jonge MD; Bell MJ
    Ann Bot; 2019 Feb; 123(3):543-556. PubMed ID: 30357312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L.).
    Bashir S; Basit A; Abbas RN; Naeem S; Bashir S; Ahmed N; Ahmed MS; Ilyas MZ; Aslam Z; Alotaibi SS; El-Shehawi AM; Li Y
    PLoS One; 2021; 16(7):e0254647. PubMed ID: 34255800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome assembly of the Chinese maize elite inbred line RP125 and its EMS mutant collection provide new resources for maize genetics research and crop improvement.
    Nie S; Wang B; Ding H; Lin H; Zhang L; Li Q; Wang Y; Zhang B; Liang A; Zheng Q; Wang H; Lv H; Zhu K; Jia M; Wang X; Du J; Zhao R; Jiang Z; Xia C; Qiao Z; Li X; Liu B; Zhu H; An R; Li Y; Jiang Q; Chen B; Zhang H; Wang D; Tang C; Yuan Y; Dai J; Zhan J; He W; Wang X; Shi J; Wang B; Gong M; He X; Li P; Huang L; Li H; Pan C; Huang H; Yuan G; Lan H; Nie Y; Li X; Zhao X; Zhang X; Pan G; Wu Q; Xu F; Zhang Z
    Plant J; 2021 Oct; 108(1):40-54. PubMed ID: 34252236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A putative plant organelle RNA recognition protein gene is essential for maize kernel development.
    Chettoor AM; Yi G; Gomez E; Hueros G; Meeley RB; Becraft PW
    J Integr Plant Biol; 2015 Mar; 57(3):236-46. PubMed ID: 24985738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.