These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36394430)

  • 1. Automated and Efficient Generation of General Molecular Aggregate Structures.
    Plett C; Grimme S
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202214477. PubMed ID: 36394430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Molecular Cluster Growing for Explicit Solvation by Efficient Force Field and Tight Binding Methods.
    Spicher S; Plett C; Pracht P; Hansen A; Grimme S
    J Chem Theory Comput; 2022 May; 18(5):3174-3189. PubMed ID: 35482317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of GFN1-xTB for periodic optimization of metal organic frameworks.
    Nurhuda M; Perry CC; Addicoat MA
    Phys Chem Chem Phys; 2022 May; 24(18):10906-10914. PubMed ID: 35451436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A semi-automated quantum-mechanical workflow for the generation of molecular monolayers and aggregates.
    Kohn JT; Grimme S; Hansen A
    J Chem Phys; 2024 Sep; 161(12):. PubMed ID: 39319657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Chemical Calculation of Molecular and Periodic Peptide and Protein Structures.
    Schmitz S; Seibert J; Ostermeir K; Hansen A; Göller AH; Grimme S
    J Phys Chem B; 2020 May; 124(18):3636-3646. PubMed ID: 32275425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Computation of Free Energy Contributions for Association Reactions of Large Molecules.
    Spicher S; Grimme S
    J Phys Chem Lett; 2020 Aug; 11(16):6606-6611. PubMed ID: 32787231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure Optimisation of Large Transition-Metal Complexes with Extended Tight-Binding Methods.
    Bursch M; Neugebauer H; Grimme S
    Angew Chem Int Ed Engl; 2019 Aug; 58(32):11078-11087. PubMed ID: 31141262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems.
    Spicher S; Grimme S
    Angew Chem Int Ed Engl; 2020 Sep; 59(36):15665-15673. PubMed ID: 32343883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ONIOM meets
    Plett C; Katbashev A; Ehlert S; Grimme S; Bursch M
    Phys Chem Chem Phys; 2023 Jul; 25(27):17860-17868. PubMed ID: 37378957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient workflow for the investigation of the catalytic cycle of water oxidation catalysts: Combining GFN-xTB and density functional theory.
    Menzel JP; Kloppenburg M; Belić J; de Groot HJM; Visscher L; Buda F
    J Comput Chem; 2021 Oct; 42(26):1885-1894. PubMed ID: 34278594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CREST-A program for the exploration of low-energy molecular chemical space.
    Pracht P; Grimme S; Bannwarth C; Bohle F; Ehlert S; Feldmann G; Gorges J; Müller M; Neudecker T; Plett C; Spicher S; Steinbach P; Wesołowski PA; Zeller F
    J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38511658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast and Reasonable Geometry Optimization of Lanthanoid Complexes with an Extended Tight Binding Quantum Chemical Method.
    Bursch M; Hansen A; Grimme S
    Inorg Chem; 2017 Oct; 56(20):12485-12491. PubMed ID: 28981275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and Robust Modeling of Lanthanide and Actinide Complexes, Biomolecules, and Molecular Crystals with the Extended GFN-FF Model.
    Rose T; Bursch M; Mewes JM; Grimme S
    Inorg Chem; 2024 Oct; 63(41):19364-19374. PubMed ID: 39334529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient calculation of protein-ligand binding free energy using GFN methods: the power of the cluster model.
    Chen YQ; Sheng YJ; Ma YQ; Ding HM
    Phys Chem Chem Phys; 2022 Jun; 24(23):14339-14347. PubMed ID: 35642694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated and efficient quantum chemical determination and energetic ranking of molecular protonation sites.
    Pracht P; Bauer CA; Grimme S
    J Comput Chem; 2017 Nov; 38(30):2618-2631. PubMed ID: 28861911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated exploration of the low-energy chemical space with fast quantum chemical methods.
    Pracht P; Bohle F; Grimme S
    Phys Chem Chem Phys; 2020 Apr; 22(14):7169-7192. PubMed ID: 32073075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general intermolecular force field based on tight-binding quantum chemical calculations.
    Grimme S; Bannwarth C; Caldeweyher E; Pisarek J; Hansen A
    J Chem Phys; 2017 Oct; 147(16):161708. PubMed ID: 29096497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliable prediction of association (free) energies of supramolecular complexes with heavy main group elements - the HS13L benchmark set.
    Gorges J; Grimme S; Hansen A
    Phys Chem Chem Phys; 2022 Dec; 24(47):28831-28843. PubMed ID: 36421068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate and rapid prediction of p
    Sinha V; Laan JJ; Pidko EA
    Phys Chem Chem Phys; 2021 Feb; 23(4):2557-2567. PubMed ID: 33325474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.